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Abstract—Hierarchical federated learning (HFL) has demon-
strated promising scalability advantages over the traditional
“star-topology” architecture-based federated learning (FL).
However, HFL still imposes significant computation, communica-
tion, and storage burdens on the edge, especially when training
a large-scale model over resource-constrained Internet of Things
(IoT) devices. In this paper, we propose hierarchical independent
submodel training (HIST), a new FL methodology that aims
to address these issues in hierarchical settings. The key idea
behind HIST is a hierarchical version of model partitioning,
where we partition the global model into disjoint submodels in
each round, and distribute them across different cells, so that
each cell is responsible for training only one partition of the
full model. This enables each client to save computation/storage
costs while alleviating the communication loads throughout the
hierarchy. We characterize the convergence behavior of HIST for
non-convex loss functions under mild assumptions, showing the
impact of several attributes (e.g., number of cells, local and global
aggregation frequency) on the performance-efficiency tradeoff.
Finally, through numerical experiments, we verify that HIST
is able to save communication costs by a wide margin while
achieving the same target testing accuracy.

I. INTRODUCTION

The past decade has witnessed a huge breakthrough in
various machine learning (ML) applications, from computer
vision to natural language processing. As training data for
these tasks are often collected by geographically separated
clients, developing efficient distributed training strategies has
become increasingly important [1]–[3]. In this context, feder-
ated learning (FL) is receiving significant attention nowadays
as it enables clients to collaboratively train a global model
without any raw data exchange [4].

In the traditional cloud-based FL [5], all clients in the
system directly communicate with a central cloud server for
model aggregations, resulting in communication scalability
issues as the size of the network grows. Hierarchical federated
learning (HFL) has been proposed as a solution [6]–[8], taking
advantage of the fact that clusters of clients (e.g., cells) may
be served by intermediate edge servers. The introduction of
edge servers in HFL reduces communication and scheduling
complexity, as the cloud server now only needs to communi-
cate with the edge servers.

However, as the size of the model increases, the HFL train-
ing process still suffers from scalability issues. These mani-
fest in several dimensions: (i) computation/storage costs at
individual clients, (ii) communication burden between clients

and the edge server, and (iii) communication load between
edge servers and the cloud server. These are fundamental
bottlenecks for the practical deployment of HFL, especially
when resource-constrained mobile and Internet of Things
(IoT) devices aim to collaboratively train a large-scale neural
network model.

In this paper, we propose HIST, a new FL methodology that
integrates independent submodel training (IST) in hierarchical
networks to address the aforementioned challenges. The core
idea of HIST is to partition the global model into disjoint
submodels in each training round and distribute them across
different cells, so that devices in distinct cells are responsible
for training different partitions of the full model. Such a
submodel partitioning effectively reduces computation and
storage loads at local clients, and also alleviates communi-
cation burden on both the links between clients and the edge
server and between edge servers and the cloud server. The
main contributions of this paper are summarized as follows:

• We propose HIST, a hierarchical independent submodel
training methodology that successfully reduces com-
putation, communication, and storage costs during the
training process of HFL.

• We analytically characterize the convergence bound of
HIST for non-convex loss functions, under milder as-
sumptions than those found in the literature. Based on
the result, we analyze the performance-efficiency tradeoff
induced by HIST, and provide guidelines on setting the
key system parameters of HFL.

• In simulations, we evaluate the effectiveness of the pro-
posed algorithm by training a neural network in two dif-
ferent data distribution setups for hierarchical networks.
We show that our proposed HIST achieves significant
resource savings for a target trained model accuracy
compared with the standard hierarchical FedAvg [8].

Related Works: The exploration of submodel training
commenced with the pioneering work [9], where the authors
introduced the concept of IST for fully connected neural
networks and provided theoretical analysis under centralized
settings. Subsequently, submodel training was extended to
graph neural networks [10] and ResNets [11]. Due to its
effectiveness in addressing communication, computation, and
storage challenges, the concept of IST was subsequently
considered in distributed scenarios [12], where the authors



empirically show the effectiveness of submodel training in
FL. Additionally, several studies also characterized the con-
vergence behavior of distributed submodel training [13]–[15].
However, the aforementioned works either rely on restrictive
assumptions [13], [14] or narrow the focus to quadratic models
[15]. More importantly, existing works focus on cloud-based
FL with a single server, and thus do not provide insights into
the hierarchical case. To the best of our knowledge, HIST
is the earliest work to integrate IST with HFL and provide
theoretical analysis as well as experimental results.

II. SYSTEM MODEL AND FORMULATION

We consider a HFL system that consists of a single
cloud server, N edge servers indexed by {1, 2, . . . , N}, and∑N

j=1 nj clients, where nj is the number of clients located in
the j-th cell. Edge server j is responsible for coordinating the
training of nj clients in cell j. The global server is in charge
of model aggregation over N geographically distributed edge
servers. Given the loss function l(x, ξi) which measures the
loss on sample ξi with model x ∈ Rd, the training objective
of this HFL system can be formulated as

min
x

f(x) :=
1

N

N∑
j=1

fj(x) Global loss

fj(x) :=
1

nj

∑
i∈Cj

Fi(x) Cell loss

Fi(x) := Eξi∼Di
[l(x, ξi)] Client loss

(1)

where f : Rd ← R, fj : Rd ← R, and Fi : Rd ← R
represent the global, cell, and client losses, respectively. Cj
denotes the client set of cell j, and Di denotes the local data
distribution of client i. In this work, we mainly consider the
non-i.i.d. scenario, where data distribution is heterogeneous
among different clients, i.e., Dj ̸= Dj′ , ∀j′ ̸= j.

In conventional HFL, all clients in the system are required
to train the full model. To support such model training, each
client needs to be equipped with enough computation, storage,
and communication resources. However, it is unaffordable for
resource-constrained clients to handle the training of large-
scale models. This motivates us to develop a more efficient
training framework for HFL, which will be discussed in the
next section.

III. HIERARCHICAL INDEPENDENT SUBMODEL
TRAINING ALGORTHM

In this section, we introduce our HIST algorithm tailored to
HFL and analyze the communication complexity to demon-
strate its efficiency.

A. Algorithm Description

Inspired by IST [9], we develop a hierarchical federated
submodel training algorithm termed HIST, by incorporating
hierarchical FedAvg and submodel partitioning. The overview
of HIST is presented in Fig. 1 and Algorithm 1. The global
cloud server periodically aggregates the models from the edge
servers, while each edge server periodically aggregates the
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Fig. 1: Overview of proposed hierarchical independent sub-
model training (HIST). Each cell is responsible for training
only a specific partition of the full model, where the submodel
partitioning changes over global rounds.

models from the clients within the corresponding cell. The
key difference with the conventional HFL is that, clients do
not need to store, update, and exchange the full model in
HIST.

Specifically, in the beginning of t/E-th global round where
t represents the iteration number of clients and E denotes the
period of the global aggregation, the cloud server initiates the
training process by partitioning the current global model x̄t

into N disjoint submodels:

x̄t
j = pt

j ⊙ x̄t,∀j ∈ {1, 2, . . . , N}, (2)

where ⊙ denotes a Hadamard Product operation, x̄t
j represents

the j-th submodel for cell j, and pt
j is a mask that has either

0 or 1 in its element and satisfying

pt
j ⊙ pt

j′ = 0,∀j′ ̸= j, and
N∑
i=1

pt
j = 1. (3)

These submodels are then distributed to the edge servers, and
each edge server subsequently disseminates submodel x̄t

j to
the clients within its coverage, such that xt

i = x̄t
j ,∀i ∈ Cj .

Once the clients receive the most recent model from the server,
they start training with their local datasets. The essential steps
performed by clients, edge servers, and the global server in
our proposed algorithm are outlined as follows:

Clients: Clients first compute stochastic gradients with
respect to their corresponding submodels, and then update the
local models for H steps via the following iteration:

xt+1
i = xt

i − γpt
j ⊙∇l(xt

i, ξi),∀i ∈ Cj ,∀j. (4)

Note that pt
j keeps invariant during one global round, i.e.,

pmE+e
j = pmE

j , ∀e = {1, 2, . . . , E − 1}, where m denotes
the number of the global rounds. Subsequently, clients upload
the updated submodels to the edge server for edge model
aggregation.



Edge Servers: After every H steps of local submodel
updates, each edge server aggregates the local models within
its coverage as

x̄t+1
j ← 1

nj

∑
i∈Cj

xt+1
i ,∀j. (5)

Subsequently, edge servers determine whether to upload the
aggregated model to the cloud server or disseminate it to the
clients. The criterion is whether the current iteration number
t + 1 of clients is divisible by E. If not, edge servers just
disseminate the edge models in (5) to the corresponding
clients; otherwise, edge servers upload their edge models to
the cloud server.

Cloud Server: If the client’s current iteration number t+1
is a multiple of E, the cloud server aggregates the edge models
from edge servers according to

x̄t+1 =

N∑
j

pt
j ⊙ x̄t+1

j . (6)

Subsequently, the cloud server partitions the global model x̄t+1

based on newly generated masks pt+1
j

xt+1
j = pt+1

j ⊙ x̄t+1,∀j ∈ {1, 2, . . . , N}. (7)

Finally, xt+1
j will be sent to edge server j for initiating the

next round of training. Here, it is worth emphasizing that x̄t

is defined on t ∈ {mE | m ∈ N} while x̄t
j is defined on

t ∈ {mH | m ∈ N}.
With the proposed algorithm, clients and edge servers are

not required to store or manipulate the full model parameters.
This enables HIST to reduce the communication, computa-
tion, and storage burdens of clients and edge servers compared
to the conventional HFL.

B. Communication Complexity Analysis

Let L0 denote the transmission load of a full model. Each
client sends its local model parameter to the corresponding
edge server every H iterations, where H denotes the number
of local updates. Assume that the mask size, defined as the
number of non-zero entries of pt

j , is uniform among N cells.
In every H iterations, the total communication load of all the
clients within cell j becomes njL0

N , which corresponds to the
communication complexity of edge server j. The average per-
iteration communication load of each client and edge server
is L0

NH and njL0

NH , respectively. Additionally, for the cloud
server, the communication complexity at every E iterations
is L0. Under the methodology of HIST, the communication
complexity of the cloud server is invariant to the number of
edge servers. In summary, HIST reduces the communication
consumption of the global server, edge server, and client to
1
N of what would be required by the standard hierarchical
FedAvg algorithm.

IV. CONVERGENCE ANALYSIS

In this section, we provide convergence analysis for the
proposed HIST algorithm. Although the proposed HIST al-
gorithm shares a similar training process with the hierarchical

Algorithm 1: Hierarchical Independent Submodel
Training Algorthm

Input: Initial masks {p0
1,p

0
2, . . . ,p

0
N}, initial models

x̄0, and x0
i = x̄0

j = p0
j ⊙ x̄0,∀i ∈ Cj ,∀j,

learning rate γ
for t ∈ {0, 1, . . . , T − 1} do

for each cell and edge server in parallel do
for each client i ∈ Cj in parallel do

Update local submodel xt+1
i by (4)

end
if H | t+1 then

Update edge model x̄t+1
j via (5)

if E | t+1 then
Upload x̄t+1

j to the cloud server
else

Disseminate x̄t+1
j to clients

end
end

end
if E | t+1 then

Update the global model x̄t+1 via (6)
Generate masks {pt+1

j } under rule (3)
Partition the global model by (7) and send the
obtained submodels x̄t+1

j to clients within cell
j, xt+1

i = x̄t+1
j , ∀i ∈ Cj ,∀j

end
end

FedAvg, we stress that the convergence proof for the latter one
cannot be directly extended to our case that adopts submodel
partitioning, due to the effect of the masks. Specifically,
when comparing pt

j ⊙ ∇Fi(p
t
j ⊙ x) and ∇Fi(x), the mask

pt
j compresses not only the gradient but also the model,

while many existing works only investigate compressing the
gradient. Theoretical analysis on the methods of compressing
the model [16] is quite limited. Even in the single-cell sce-
nario, existing proofs of IST [13], [14] rely on some stronger
assumptions. Finally, the hierarchical architecture with both
multiple steps of client update and multiple steps of edge
training we consider makes the analysis further complicated.

A. Assumptions

We focus on a general non-convex loss function and con-
sider a non-i.i.d data setting. Our theoretical analysis relies on
the following assumptions.

Assumption 1. The global loss function f(x) has a lower
bound f∗, i.e., f(x) ≥ f∗,∀x.

Assumption 2. Fi is differentiable and L-smooth, i.e., there
exists a positive constant L such that for any x and y

∥∇Fi(x)−∇Fi(y)∥2 ≤ L∥y − x∥,∀i,

Fi(y) ≤ Fi(x) + ⟨∇Fi(x),y − x⟩+ L

2
∥y − x∥2,∀i.

(8)



With Assumption 2, one can also claim that functions fj ,
∀j and f are L-smooth [17].

Assumption 3. The stochastic gradient ∇l(x, ξi) is an unbi-
ased estimate of the true gradient, i.e., Eξi∼Di

[∇l(x, ξi)] =
∇Fi(x),∀x.

Assumption 4. The variance of the stochastic gradient
∇l(x, ξi) is bounded as

Eξi∼Di
∥∇l(x, ξi)−∇Fi(x)∥2 ≤ σ2,∀x. (9)

Assumption 5. The gradient dissimilarity between the global
loss and each edge loss fj can be bounded by a constant δ21 ,
i.e.,

1

N

N∑
j=1

∥∇fj(x)−∇f(x)∥2 ≤ δ21 ,∀x. (10)

Assumption 6. The gradient dissimilarity between the edge
loss fj and each client loss Fi(x) can be bounded by a
constant δ22 , i.e.,

1

nj

∑
i∈Cj

∥∇Fi(x)−∇fj(x)∥2 ≤ δ22 ,∀x,∀j. (11)

Assumptions 1-4, have been widely adopted in the context
of stochastic non-convex and smooth settings [17]. Assump-
tions 5 and 6 serve to characterize the degree of data hetero-
geneity between different cells and clients, which is a common
characteristic within the HFL literature [8].

B. Theoretical Results

When implementing HIST in practice, x̄t will not be com-
puted unless t is a multiple of E as the global synchronization
occurs every E iterations. We establish the convergence
properties of the proposed algorithm by characterizing the
evolution of ∥∇f (x̂t)∥2, x̂t :=

∑N
j=1 p

t
j ⊙ 1

nj

∑
i∈Cj

xt
i, t =

{0, 1, 2, . . . , T − 1}, to see how fast the model converges to
the stationary point of the general non-convex loss function.
The sequence {x̂t | t = 0, 1, 2, . . . , T −1} we use for analysis
serves as a virtual global model, which is commonly em-
ployed to monitor the convergence of distributed algorithms
with delayed global synchronization [18]. Now we state the
following main theorem.

Theorem 1. Suppose that Assumptions 1-6 hold, the masks
{pt

1,p
t
2, . . . ,p

t
N} are uniformly and randomly generated

based on (3), N ≥ 2, and the step size satisfies

γ ≤min

{
1

32E
√
N − 1L

,
Ñ

NHL
,

1

NH2L
,

1

(N + 1)EL

}
.

(12)

Then, HIST achieves the following convergence behavior for
non-convex loss functions:

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤ 4
f(x̄0)− f∗

γ
+ 50γÑLσ2

+24γLδ22+12δ21+24(N−1)L2E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 , (13)

where Ñ =
∑N

j=1
1
nj

, and x̄mE is the synchronized global
model generated by our HIST algorithm.

Theorem 1 presents the optimality gap for the time-
averaged squared gradient norm. The first term in this upper
bound exhibits the influence of the initial optimality gap
on convergence performance. The second term reveals the
impact of the variance of stochastic gradients on convergence,
which can be mitigated by increasing the batch size when
computing stochastic gradients. The third and fourth terms
indicate that the non-i.i.d. characteristics within the cell and
across cells affect convergence performance. The last term
demonstrates that the norms of synchronized global models
also influence the optimality gap. Note that the last two terms
are induced by submodel partition. In addition, the step size γ
is a configurable parameter that impacts the first three terms
of the derived upper bound. Plugging an appropriate step size
into Theorem 1 gives rise to the following corollary.

Corollary 1. Suppose that Assumptions 1-6 hold, the masks
{pt

1,p
t
2, . . . ,p

t
N} are uniformly and randomly generated

based on (3), N ≥ 2, and let the step size γ = (TÑ)−
1
2

in which T is large enough to satisfy (12). Then, the HIST
algorithm satisfies

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤ O (Ñ 1
2T− 1

2

)
+O

(
T− 1

2

)
+ 12δ21 + 24(N − 1)L2E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 , (14)

where Ñ and x̄mE are described in Theorem 1.

Remark 1. In Corollary 1, the retention of Ñ within the
convergence rate expression is motivated by the possibility
of an arbitrary relationship between the number of clients
in each cell, denoted as nj , and the total number of cells,
denoted as N . When the number of clients in each cell
is of a comparable magnitude or greater than the total
number of cells, the convergence rate of the diminishing
terms in the derived upper bound is primarily determined by
O
(
T− 1

2

)
. However, if the number of clients in each cell is

significantly smaller in relation to the total number of cells,
Ñ becomes influential, and the convergence rate is dominated
by O

(
Ñ

1
2T− 1

2

)
.

C. Discussions

Non-diminishing bound: With the step size chosen in Corol-
lary 1, the first three terms in (13) will diminish to zero as
long as the number of total iterations, i.e., T , is large enough.
The rest two terms are non-diminishing parts that arise due
to submodel training. One can claim that HIST can converge
to the neighborhood of a stationary point of the non-convex
loss function under the aforementioned conditions. A similar
phenomenon has also been reported in the single-cell case [9],
[13], [15]. The bound enables us to explore the performance-
resource trade-off, where more detailed discussions will be
provided in the next paragraph.



The choice of N : As N increases, i.e., as the overall clients
in the system are divided into more cells during training,
the size of the submodels gets smaller, providing a more
lightweight model to the edge servers and clients. As a result,
the training costs including computation, communication, and
storage will be reduced at each iteration. However, as observed
in Corollary 1, a large N causes the sequence to deviate
further from the stationary point. Overall, there is a trade-
off between the convergence performance and computation,
communication, and storage costs.

The optimal values of H and E: The choices of H and
E impact the communication frequency. As H increases, the
aggregation frequency at the edge servers will become smaller,
reducing the communication load between clients and the
edge server. On the other hand, a large E induces fewer
global synchronizations, which releases the communication
burden between edge servers and the cloud server. However,
these values cannot be infinitely large. The maximum value
of H and E can be derived from the condition of the step
size γ. Specifically, to make the step size γ = (TÑ)−

1
2

in Corollary 1 satisfy (12), H and E can be set as on
the order of min

{
O
(
(ÑT )

1
4N−1

2

)
,O
(
Ñ

3
2T

1
2N−1

)}
and

O
(
(ÑT )

1
2N−1

)
at most, respectively.

V. SIMULATIONS

In this section, we conduct experiments to evaluate the
performance of the proposed HIST algorithm.

A. Simulation Settings

We consider an image classification task on Fashion-
MNIST using a two-layer fully connected neural network.
In this model, we configure the input layer to have 784
neurons, corresponding to the size of the input image, and the
output layer to have 10 neurons, which matches the number
of classes. Additionally, we employ a hidden layer with 300
neurons. The cloud server partitions these hidden neurons
to construct different submodels. Let the submodels share
the same size with each other, which can be achieved by
uniformly and randomly partitioning the hidden neurons.

We consider a setup with 60 clients evenly distributed
across N cells, where N ∈ {2, 3, 4, 5}. We consider two
practical data distribution settings: (i) the fully non-i.i.d. case
and (ii) the case with i.i.d data across cells but non-i.i.d data
across the clients within the same cell. For the former case,
the client’s dataset construction follows the approach outlined
in [2]. The process begins by sorting the training samples
based on their corresponding labels. Following this, the train-
ing dataset is partitioned into 120 shards, with each shard
containing 500 samples. Subsequently, each client is assigned
2 shards, ensuring that each client’s dataset comprises 1000
samples. For the latter, we first uniformly and randomly divide
the entire training set into N parts, corresponding to N cells,
and then distribute each part to the clients within the respective
cell in a non-i.i.d. manner following the former case.
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Fig. 2: The impact of the number of cells N on the conver-
gence performance.
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Fig. 3: Communication cost for achieving a testing accuracy
of 75%.

B. Experiment Results and Discussions

Comparison with Baselines: In Fig. 2, we compare our
proposed HIST algorithm with the traditional hierarchical
FedAvg (denoted as HFedAvg in our figures) where the
full model is communicated over the network. We compare
their performance in terms of testing accuracy under different
numbers of cells, N ∈ {2, 3, 4, 5}. The x-axis here repre-
sents the communication load which quantifies the volume of
parameters transmitted by each client, where the unit is set
to the load of a full-model transmission. For each client, the
communication cost per global round is equal to 1

N
E
H times

the load of a full-model transmission. Here, E/H represents
the number of edge aggregations per global round. We set H
and E to 40 and 200, respectively. As shown in Figs. 2a and
2b, the proposed HIST algorithm outperforms hierarchical
FedAvg in terms of testing accuracy at the same levels
of communication consumption for both data distribution
settings. Additionally, as N increases, the non-i.i.d. extent
of data among clients becomes more pronounced, leading to
performance degradation for hierarchical FedAvg. In contrast,
the proposed HIST achieves a higher testing accuracy when
N increases from N = 2 to N = 4. This is because, for
HIST, the per-round communication cost per client decreases
as the number of cells increases. However, when we increase
the number of cells to N = 5, HIST also suffers performance
degradation. This can be attributed to the submodel getting too
small for effectively handling the task, highlighting the trade-
off between training costs and testing accuracy, which is also
consistent with our theoretical results.

Fig. 3 compares the communication cost of HIST and
hierarchical FedAvg for achieving the desired accuracy under
both data distribution scenarios. This experiment was carried
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Fig. 4: The impacts of aggregation periods H and E on the
convergence performance.

out with H = 40 and E = 200. The desired testing accuracy
is set to be 75%. The Y-axis measures the size of parameters
transmitted by each client during the training process as in the
x-axis of Fig. 2. It is observed that HIST needs less communi-
cation to achieve the preset accuracy, which demonstrates the
efficiency of the proposed algorithm over hierarchical FedAvg.
In addition, as the number of cells increases from N = 2 to
N = 4, the communication cost shows a decreasing trend,
which forms a sharp comparison with hierarchical FedAvg.
This further demonstrates the advantage of the proposed HIST
algorithm.

Effects of System Parameters: The impacts of the periods
of the edge aggregation H and the global synchronization
E/H on the convergence behavior are demonstrated in Fig.
4. The x-axis represents the number of global model syn-
chronizations at the cloud server. We consider the 3-cell case
(i.e., N = 3) where 60 users are uniformly distributed across
these cells without overlapping. As E/H increases from 5
to 10 to 15, HIST attain a better convergence performance,
which is witnessed by both Figs. 4a and 4b. This is because
a large E/H gives rise to a lower communication load for
each round. When H increases from 20 to 40, and from 40
to 60, Fig. 4b shows that the convergence speed of HIST
first enjoys an acceleration and then a degradation, where the
latter is induced by data heterogeneity. This phenomenon also
fits well with our theory, where we show that there is an
upper bound for the number of local updates. Fig. 4b shows
that HIST has a better performance as H increases from 40
to 60. This is because this data distribution exhibits lower
data heterogeneity, which allows for a larger number of local
updates.

VI. CONCLUSION

In this paper, we developed a hierarchical federated sub-
model training algorithm termed HIST, that is efficient
in terms of communication, computation, and storage by
integrating independent model training with local training.
We investigated its convergence behavior with uniform sub-
model partitioning under non-convex loss functions and non-
i.i.d. data settings, and characterized the impacts of non-
i.i.d. extent, the number of periods of edge and global
aggregations, and the number of cells on the convergence
performance. We show that HIST converges with rate

max
{
O
(
Ñ

1
2T−1

2

)
,O
(
T−1

2

)}
to a neighborhood of a sta-

tionary point of the global loss function. Simulation results on
two practical data distribution settings show that HIST is able
to achieve the target accuracy much faster with less training
costs, compared to the standard hierarchical FedAvg.
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APPENDICES

A. Proof of Theorem 1

For analysis, we introduce virtual iterates x̂t
j := 1

nj

∑
i∈Cj

xt
i, t = {0, 1, 2, . . . , T − 1}, ∀j which denotes the average of

local models within cell j and x̂t :=
∑N

j=1 p
t
j ⊙ x̂t

j which represents the vitually synchronized global model.
The proof of Theorem 1 relies on the following three lemmas which are proved in the next subsection.

Lemma 1. Suppose that Assumptions 2-5 hold, the masks {pt
1,p

t
2, . . . ,p

t
N} are uniformly and randomly generated based on

(3), N ≥ 2, and γ ≤ 1
L , then the virtual iterate x̂t satisfy

E[f(x̂t+1)] ≤E[f(x̂t)]− γ

2
E
∥∥∇f(x̂t)

∥∥2 + γ2Lσ2

2
Ñ +

3γ

2
δ21

+
3γL2

2


N∑
j=1

E
∥∥x̂t − x̂t

j

∥∥2 + N∑
j=1

1

nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2 .
(15)

Lemma 2. Suppose that Assumptions 2-5 hold, the masks {pt
1,p

t
2, . . . ,p

t
N} are uniformly and randomly generated based on

(3), and γ ≤ 1

EL
√

54(N+1)
, then the difference between the edge models and the global model can be bounded as

1

T

T−1∑
t=0

N∑
j=1

E
∥∥x̂t − x̂t

j

∥∥2 ≤1

3

1

T

T−1∑
t=0

N∑
j=1

1

nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2 + 162γ2E2(N − 1)
1

T

T−1∑
t=0

E
∥∥∇f (x̂t

)∥∥2
+ 108γ2(N + 1)E2δ21 + 6γ2(N + 1)ÑEσ2 + 4(N − 1)

E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 .
(16)

Lemma 3. Suppose that Assumptions 2-4 and 6 hold and γ ≤ 1√
18HL

, then the difference between the local models and the
edge models can be bounded as

1

T

T−1∑
t=1

N∑
j=1

1

nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2 ≤ 3

2
γ2NHσ2 + 3γ2NH2δ22 . (17)

Lemma 1 characterizes the dynamics of the global loss function. Lemmas 2 and 3 characterize the upper bound of the
diversity between the virtual global model and edge models and between the virtual edge model and local models, respectively.
With these lemmas, we can prove Theorem 1 as follows. First, reorganizing the inequality provided in Lemma 1, we have

E
∥∥∇f(x̂t)

∥∥2 ≤2E[f(x̂t)]− E[f(x̂t+1)]

γ
+ γLσ2Ñ + 3δ21

+ 3L2


N∑
j=1

E
∥∥x̂t − x̂t

j

∥∥2 + N∑
j=1

1

nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2 .

(18)

Telescoping the above inequalities from t = 0 to T − 1, we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤2f(x̄0)− E[f(x̂T )]

γ
+ γLσ2Ñ + 3δ21 + 3L2 (De +Dc) , (19)

where De =
1
T

∑T−1
t=0

∑N
j=1 E

∥∥x̂t − x̂t
j

∥∥2 and Dc =
1
T

∑T−1
t=1

∑N
j=1

1
nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2.
According to Lemma 2, we have

De +Dc ≤
4

3
Dc + 162γ2E2(N − 1)

1

T

T−1∑
t=0

E
∥∥∇f (x̂t

)∥∥2 + 108γ2(N + 1)E2δ21

+ 6γ2(N + 1)ÑEσ2 + 4(N − 1)
E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 . (20)



Combining the (19), (20), and Lemma 3, we have

(
1− 486γ2E2(N − 1)L2

) 1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤ 2
f(x̄0)− E[f(x̂T )]

γ
+ γLσ2Ñ + 3δ21

+ 6L2(γ2NHσ2 + 2γ2NH2δ22) + 324γ2(N + 1)E2L2δ21 + 18γ2(N + 1)ÑEL2σ2

+ 12(N − 1)L2E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 .
(21)

As γ ≤ 1

EL
√

972(N−1)
, one can claim 1− 972γ2E2(N − 1)L2 ≥ 1

2 . Reorganizing (21) gives rises to

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤4f(x̄0)− E[f(x̂T )]

γ
+

(
2 + 12γ

N

Ñ
HL+ 36γ(N + 1)EL

)
γLσ2Ñ + 24γ2NH2L2δ22

+
(
6 + 648γ2(N + 1)E2L2

)
δ21 + 24(N − 1)L2E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 . (22)

Recalling the setting of γ, we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤4f(x̄0)− E[f(x̂T )]

γ
+ 50γÑLσ2 + 24γLδ22

+ 12δ21 + 24(N − 1)L2E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 , (23)

where we use the inequality 32
√
N − 1 >

√
108(N + 1), ∀N ≥ 2. Combining the above inequality with Assumption 1 gives

rise to Theorem 1.

B. Proof of Lemmas

Before proving the above lemmas, we introduce some notations. Denote Et as an expectation conditioned on the historical
information up to the start of the t-th iteration. Denote Ep

t as an expectation over masks {pt
j}Nj=1. Let gt

i denote the stochastic
gradient ∇l(xt

i, ξi), ξi ∈ Di. In addition, we present two facts that will be used in this subsection.

Fact 1. Suppose that masks generated by rule (3) are uniform among {1, 2, . . . , N}, i.e., ∥pj∥1 = d
N ,∀j, then

E[pj ⊙ z] =
1

N
∥z∥2, ∀j.

Proof.

E[∥pj ⊙ z∥2] = E[
d∑

k=1

([pj ]kzk)
2] = E[

d∑
k=1

([pj ]kzk)
2] =

d∑
k=1

E[([pj ]kzk)2] =
d∑

k=1

1

N
z2k =

1

N
∥z∥2,

where [pj ]k and zk represent the k-th elements of pj and z, respectively.

Fact 2. Any masks {pj}Nj=1 generated by rule (3) satisfy

N∑
j=1

∥pj ⊙ z − z∥2 = (N − 1)∥z∥2.

Proof.
N∑
j=1

∥pj ⊙ z − z∥2 =

N∑
j=1

{∥pj ⊙ z∥ − 2⟨pj ⊙ z, z⟩+ ∥z∥2} = (N − 1)∥z∥2.



1) Proof of Lemma 1: Based on the virtual iteration x̂t+1 = x̂t −
∑N

j=1 p
t
j ⊙ 1

nj

∑
i∈Cj

γgt
i and Assumption 2, we have

Et[f(x̂
t+1)] ≤f(x̂t)−Et

〈
∇f(x̂t),

N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

γgt
i

〉
︸ ︷︷ ︸

T1

+
L

2
Et

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

γgt
i

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T2

.
(24)

Utilizing Assumption 3, i.e., E[gt
i ] = ∇Fi(x

t
i) and the fact that E ∥z∥2 = E ∥z − E[z]∥2 + E ∥E[z]∥2, we rewrite T2 as

follows

T2 =γ2Et

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

gt
i −

N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

+ γ2Ep
t

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

. (25)

As there is no overlapping between any two different masks in the same round, we have

T2 =γ2
N∑
j=1

Et

∥∥∥∥∥∥pt
j ⊙

1

nj

∑
i∈Cj

gt
i − pt

j ⊙
1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

+ γ2Ep
t

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

=γ2
N∑
j=1

1

n2
j

∑
i∈Cj

Et

∥∥pt
j ⊙

(
gt
i −∇Fi(x

t
i)
)∥∥2 + γ2Ep

t

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

≤γ2σ2

 N∑
j=1

1

nj

+ γ2Ep
t

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

,

(26)

where the second equality holds because Et⟨gt
i − ∇Fi(x

t
i), g

t
i′ − ∇Fi′(x

t
i′)⟩ = 0,∀i′ ̸= i and the inequality comes from

Assumption 4. Utilizing Et[g
t
i ] = ∇Fi(x

t
i) again, we rewrite T1 as follows

T1 =− γEp
t

〈
∇f(x̂t),

N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

〉

=
γ

2

Ep
t

∥∥∥∥∥∥∇f(x̂t)−
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

−
∥∥∇f(x̂t)

∥∥2 − Ep
t

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2
 .

(27)

Plugging T1 and T2 into (24) and utilizing γ ≤ 1
L give the following inequality

Et[f(x̂
t+1)] ≤f(x̂t)− γ

2

∥∥∇f(x̂t)
∥∥2 + γ2Lσ2

2

 N∑
j=1

1

nj

+
γ

2
Ep
t

∥∥∥∥∥∥∇f(x̂t)−
N∑
j=1

pt
j ⊙

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T3

.
(28)

Based on the facts that ∇f(x̂t) =
∑N

j pt
j ⊙∇f(x̂t) and ∥

∑N
j=1 p

t
j ⊙ zj∥2 =

∑N
j=1 ∥pt

j ⊙ zj∥2, we can rewrite T3 as

T3 =Ep
t

∥∥∥∥∥∥
N∑
j=1

pt
j ⊙

∇f(x̂t)− 1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

=

N∑
j=1

Ep
t

∥∥∥∥∥∥pt
j ⊙

∇f(x̂t)− 1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

.

(29)



By inserting a zero term 0 = ∓∇fj(x̂t)∓∇fj(x̂t
j) into the right of the above expression, we have

T3 =

N∑
j=1

Ep
t

∥∥∥∥∥∥pt
j ⊙

∇f(x̂t)∓∇fj(x̂t)∓∇fj(x̂t
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1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

≤3
N∑
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Ep
t
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j)−

1

nj
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∇Fi(x
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2

=3
1

N

N∑
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N∑
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t

∥∥pt
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(
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j)
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 1

nj
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∇Fi(x̂
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1

nj
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≤3δ21 + 3
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Ep
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nj
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j − xt

i

∥∥2 ,

(30)

where the first inequality comes from Cauchy-Swarchz inequality, the second equality holds due to Fact 1, the second inequality
follows Assumption 5 and the fact that ∥p ⊙ z∥2 ≤ ∥z∥2, the third inequality follows Jensen’s inequality, and the final one
follows Assumption 2.

Plugging the above upper bound of T3 into (28) and taking an expectation over all the randomness, we will obtain Lemma
1.

2) Proof of Lemma 2: Without the loss generality, we consider t ∈ [mE, (m + 1)E). For notation ease, we denote
T4 =

∑N
j=1 E

∥∥x̂t − x̂t
j

∥∥2. Based on the fact that the global model synchronization every E local iterations, T4 can be
rewritten as

T4 =

N∑
j=1

E

∥∥∥∥∥∥x̄mE − γ
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τ=mE
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2

.

Recalling Cauchy-Swartz inequality and Fact 2, we have

T4 ≤2
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2

︸ ︷︷ ︸
T5

.

(31)



For T5, we have
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j=1

E

∥∥∥∥∥∥
t−1∑

τ=mE

N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙ (gτi −∇Fi(x

τ
i ))

∥∥∥∥∥∥
2

+ 3

N∑
j=1

E

∥∥∥∥∥∥
t−1∑

τ=mE

1

nj

∑
i∈Cj

pτ
j ⊙ (gτi −∇Fi(x

τ
i ))

∥∥∥∥∥∥
2

+ 3

N∑
j=1

E

∥∥∥∥∥∥
t−1∑

τ=mE

N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi(x

τ
i )−

t−1∑
τ=mE

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi(x

τ
i )

∥∥∥∥∥∥
2

=3N

t−1∑
τ=mE

N∑
j=1

1

n2
j

∑
i∈Cj

E
∥∥pτ

j ⊙ (gτi −∇Fi(x
τ
i ))
∥∥2 + 3

N∑
j=1

t−1∑
τ=mE

1

n2
j

∑
i∈Cj

E
∥∥pτ

j ⊙ (gτi −∇Fi(x
τ
i ))
∥∥2

+ 3

N∑
j=1

E

∥∥∥∥∥∥
t−1∑

τ=mE

N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi(x

τ
i )−

t−1∑
τ=mE

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi(x

τ
i )

∥∥∥∥∥∥
2

≤3(t−mE)

t−1∑
τ=mE

N∑
j=1

E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi(x

τ
i )−

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi(x

τ
i )

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T6

+ 3(N + 1)(t−mE)σ2
N∑
j=1

1

nj
,

(32)

where the first inequality comes from Cauchy-Swartz inequality, the second equality follows [19, Lemma 2], and the second
inequality follows Cauchy-Swartz inequality and Assumption 4.

For T6, we have

T6 =E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi (x

τ
i )∓∇Fi

(
x̂τ
j

))
− 1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi (x

τ
i )∓∇Fi

(
x̂τ
j

))∥∥∥∥∥∥
2

≤3E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi (x

τ
i )−∇Fi

(
x̂τ
j

))∥∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi

(
x̂τ
j

)
− 1

nj

∑
i∈Cj

pτ
j ⊙∇Fi

(
x̂τ
j

)∥∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∥ 1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi (x

τ
i )−∇Fi

(
x̂τ
j

))∥∥∥∥∥∥
2

≤3NL2
N∑
j=1

1

nj

∑
i∈Cj

E
∥∥xτ

i − x̂τ
j

∥∥2 + 3E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi

(
x̂τ
j

)
− 1

nj

∑
i∈Cj

pτ
j ⊙∇Fi

(
x̂τ
j

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
T7

+ 3L2 1

nj

∑
i∈Cj

E
∥∥xτ

i − x̂τ
j

∥∥2 ,

(33)

where the first inequality comes from Cauchy-Swartz inequality and Jensen’s inequality and the second inequality comes from



Jensen’s inequality and L-smoothness of Fi. For T7, we have

T7 =E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi

(
x̂τ
j

)
∓∇Fi (x̂

τ )
)
− 1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi

(
x̂τ
j

)
∓∇Fi (x̂

τ )
)∥∥∥∥∥∥

2

≤3E

∥∥∥∥∥∥
N∑
j=1

pτ
j ⊙

1

nj

∑
i∈Cj

(
∇Fi

(
x̂τ
j

)
−∇Fi (x̂

τ )
)∥∥∥∥∥∥

2

+ 3E

∥∥∥∥∥∥ 1

nj

∑
i∈Cj

pτ
j ⊙

(
∇Fi

(
x̂τ
j

)
−∇Fi (x̂

τ )
)∥∥∥∥∥∥

2

+ 3E

∥∥∥∥∥∥
N∑
j=1

1

nj

∑
i∈Cj

pτ
j ⊙∇Fi (x̂

τ )− 1

nj

∑
i∈Cj

pτ
j ⊙∇Fi (x̂

τ )

∥∥∥∥∥∥
2

≤3
N∑
j=1

1

nj

∑
i∈Cj

E
∥∥∇Fi

(
x̂τ
j

)
−∇Fi (x̂

τ )
∥∥2 + 3

1

nj

∑
i∈Cj

E
∥∥∇Fi

(
x̂τ
j

)
−∇Fi (x̂

τ )
∥∥2

+ 3E

∥∥∥∥∥∥
N∑
j=1

pτ
j ⊙∇fj (x̂τ )− pτ

j ⊙∇fj (x̂τ )

∥∥∥∥∥∥
2

≤3L2
N∑
j=1

E
∥∥x̂τ

j − x̂τ
∥∥2 + 3L2E

∥∥x̂τ
j − x̂τ

∥∥2 + 3E

∥∥∥∥∥∥
N∑
j=1

pτ
j ⊙∇fj (x̂τ )− pτ

j ⊙∇fj (x̂τ )

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T8

,

(34)

where the first inequality follows Cauchy-Swartz inequality, the second inequality comes from the fact that ∥
∑N

j pj⊙zj∥2 =∑N
j ∥pj ⊙ zj∥2 ≤

∑N
j ∥zj∥2 and Jensen’s inequality, and the final one holds due to Assumption 2.

Similarly, we bound T8 as follows

T8 =E

∥∥∥∥∥∥
N∑
j=1

pτ
j ⊙ (fj (x̂

τ )∓ f (x̂τ ))− pτ
j ⊙ (∇fj (x̂τ )∓∇f (x̂τ ))

∥∥∥∥∥∥
2

≤3E

∥∥∥∥∥∥
N∑
j=1

pτ
j ⊙ (∇fj (x̂τ )−∇f (x̂τ ))

∥∥∥∥∥∥
2

+ 3E
∥∥pτ

j ⊙ (∇fj (x̂τ )−∇f (x̂τ ))
∥∥2

+ 3E

∥∥∥∥∥∥pτ
j ⊙∇f (x̂τ )−

N∑
j=1

pτ
j ⊙∇f (x̂τ )

∥∥∥∥∥∥
2

=3

N∑
j=1

E
∥∥pτ

j ⊙ (∇fj (x̂τ )−∇f (x̂τ ))
∥∥2 + 3E

∥∥pτ
j ⊙ (∇fj (x̂τ )−∇f (x̂τ ))

∥∥2 + 3E
∥∥pτ

j ⊙∇f (x̂τ )−∇f (x̂τ )
∥∥2

≤ 3

N

N∑
j=1

E ∥∇fj (x̂τ )−∇f (x̂τ )∥2 + 3

N
E ∥∇fj (x̂τ )−∇f (x̂τ )∥2 + 3E

∥∥pτ
j ⊙∇f (x̂τ )−∇f (x̂τ )

∥∥2 ,
(35)

where the last inequality follows Fact 1.
Combining the upper bounds of (32), (33), (34), and (35), we have

T5 ≤9(N + 1)L2(t−mE)

t−1∑
τ=mE

T9 + 27(N + 1)L2(t−mE)

t−1∑
τ=mE

T4

+ 81(N+1)(t−mE)2
1

N

N∑
j=1

E ∥∇fj (x̂τ )−∇f (x̂τ )∥2+81(t−mE)

t−1∑
τ=mE

N∑
j=1

E
∥∥pτ

j ⊙∇f (x̂τ )−∇f (x̂τ )
∥∥2

+ 3(N + 1)(t−mE)σ2
N∑
j=1

1

nj
,

(36)



where T9 =
∑N

j=1
1
nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2. Next, utilizing Assumption 5, Fact 2, and (31), we have

T4 ≤18γ2(N + 1)L2(t−mE)

t−1∑
τ=mE

T9 + 54γ2(N + 1)L2(t−mE)

t−1∑
τ=mE

T4

+ 162γ2(N+1)(t−mE)2δ21+162γ2(N−1)(t−mE)

t−1∑
τ=mE

E ∥∇f (x̂τ )∥2

+ 6γ2(N + 1)(t−mE)σ2
N∑
j=1

1

nj
+ 2(N − 1)

∥∥x̄mE
∥∥2 .

(37)

Taking a time average of the above inequality gives rise to

1

T

T−1∑
t=0

T4 ≤9γ2(N + 1)E2L2 1

T

T−1∑
t=0

T9 + 27γ2(N + 1)E2L2 1

T

T−1∑
t=0

T4

+ 81γ2(N − 1)E2 1

T

T−1∑
t=0

E
∥∥∇f (x̂t

)∥∥2 + 54γ2(N + 1)E2δ21

+ 3γ2(N + 1)ÑEσ2 + 2(N − 1)
E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 ,
(38)

where we use the fact that 12+22+ . . .+(E−1)2 ≤ E3

3 and 1+2+ . . .+(E−1) = E2

2 . Reorganizing the above inequality,
we obtain

(
1− 27γ2(N + 1)E2L2

) 1

T

T−1∑
t=0

T4 ≤9γ2(N + 1)E2L2 1

T

T−1∑
t=0

T9 + 81γ2(N − 1)E2 1

T

T−1∑
t=0

E
∥∥∇f (x̂t

)∥∥2
+ 54γ2(N + 1)E2δ21 + 3γ2(N + 1)ÑEσ2 + 2(N − 1)

E

T

T/E−1∑
m=0

E
∥∥x̄mE

∥∥2 , (39)

As γ ≤ 1

EL
√

54(N+1)
, we thus obtain Lemma 2.

3) Proof of Lemma 3: Without loss of generality, we consider t ∈ [αH, (α + 1)H). For notation ease, we denote T9 =∑N
j=1

1
nj

∑
i∈Cj

E
∥∥x̂t

j − xt
i

∥∥2. As edge servers aggregate local models every H local iterations, we can rewrite T9 as

T9 =γ2
N∑
j=1

1

nj

∑
i∈Cj

E

∥∥∥∥∥∥
t−1∑

τ=αH

pτ
j ⊙ gτ

i −
t−1∑

τ=αH

pτ
j ⊙

1

nj

∑
i∈Cj

gτ
i

∥∥∥∥∥∥
2

=γ2
N∑
j=1

E


1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

pτ
j ⊙ gτ

i −
t−1∑

τ=αH

pτ
j ⊙

1

nj

∑
i∈Cj

gτ
i

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T10

 .

(40)



For T10, we have

T10 ≤
1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

gτ
i ∓

t−1∑
τ=αH

∇Fi(x
t
i)∓

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

gτ
i

∥∥∥∥∥∥
2

≤2 1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

gτ
i −

t−1∑
τ=αH

∇Fi(x
t
i)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

gτ
i +

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

+ 2
1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x
t
i)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

≤2 1

nj

∑
i∈Cj

∥∥∥∥∥
t−1∑

τ=αH

gτ
i −

t−1∑
τ=αH

∇Fi(x
t
i)

∥∥∥∥∥
2

+ 2
1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x
t
i)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

=2
1

nj

∑
i∈Cj

t−1∑
τ=αH

∥∥gτ
i −∇Fi(x

t
i)
∥∥2 + 2

1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x
t
i)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

≤2(t− αH)σ2 + 2
1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x
t
i)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T11

,

(41)

where the third inequality follows that the fact that 1
M

∑
∥zm− 1

M

∑M
m=1 zm∥2 ≤

1
M

∑
∥zm∥2, the second equality follows

[19, Lemma 2], and the final inequality comes from Assumption 4.
Next, we bound T11.

T11 =
1

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x
t
i)∓

t−1∑
τ=αH

∇Fi(x̂
t
j)∓

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x̂
t
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t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

≤ 3

nj

∑
i∈Cj

∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x
t
i)−

t−1∑
τ=αH

∇Fi(x̂
t
j)

∥∥∥∥∥
2

+
3

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

∇Fi(x̂
t
j)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x̂
t
j)

∥∥∥∥∥∥
2

+
3

nj

∑
i∈Cj

∥∥∥∥∥∥
t−1∑

τ=αH

1

nj

∑
i∈Cj

∇Fi(x̂
t
j)−

t−1∑
τ=αH

1

nj

∑
i∈Cj

∇Fi(x
t
i)

∥∥∥∥∥∥
2

≤ 6

nj
(t− αH)

∑
i∈Cj

t−1∑
τ=αH

∥∥∇Fi(x
t
i)−∇Fi(x̂

t
j)
∥∥2 + 3

nj
(t− αH)

∑
i∈Cj

t−1∑
τ=αH

∥∥∥∥∥∥∇Fi(x̂
t
j)−

1

nj

∑
i∈Cj

∇Fi(x̂
t
j)

∥∥∥∥∥∥
2

≤6L2

nj
(t− αH)

∑
i∈Cj

t−1∑
τ=αH

∥∥xt
i − x̂t

j

∥∥2 + 3(t− αH)2δ22 ,

(42)

where the first and second inequalities follow the Cauchy-Swartz inequality and the final one follows Assumptions 2 and 6.
Therefore, we have

T9 ≤ 2γ2N(t− αH)σ2 + 6γ2N(t− αH)2δ22 + 12γ2(t− αH)L2
t−1∑

τ=αH

T9. (43)

Taking the time average, we obtain

1

T

T−1∑
t=1

T9 ≤γ2NHσ2 + 2γ2NH2δ22 + 6γ2HL2

(
1

T

T−1∑
t=1

T9

)
. (44)

As γ ≤ 1
HL

√
18

, we thus have Lemma 3.
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