arXiv:2509.24050v1 [csLG] 28 Sep 2025

Under review

COLLABORATIVE DEVICE-CLOUD LLM INFERENCE
THROUGH REINFORCEMENT LEARNING

Wenzhi Fang', Dong-Jun Han?, Liangqi Yuan', and Christopher G. Brinton'

ABSTRACT

Device-cloud collaboration has emerged as a promising paradigm for deploying
large language models (LLMs), combining the efficiency of lightweight on-device
inference with the superior performance of powerful cloud LLMs. An essential
problem in this scenario lies in deciding whether a given query is best handled
locally or delegated to the cloud. Existing approaches typically rely on external
routers, implemented as binary classifiers, which often struggle to determine task
difficulty from the prompt’s surface pattern. To address these limitations, we pro-
pose a framework where the on-device LLM makes routing decisions at the end of
its solving process, with this capability instilled through post-training. In particu-
lar, we formulate a reward maximization problem with carefully designed rewards
that encourage effective problem solving and judicious offloading to the cloud. To
solve this problem, we develop a group-adaptive policy gradient algorithm, featur-
ing a group-level policy gradient, designed to yield an unbiased gradient estimator
of the reward, and adaptive prompt filtering, developed to enforce the constraint
on cloud LLM usage. Extensive experiments across models and benchmarks show
that the proposed methodology consistently outperforms existing baselines and
significantly narrows the gap to full cloud LLM performance.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across a wide range of tasks,
and LLM APIs are used in a variety of scenarios owing to their promising performance (Touvron
et al.| 2023} |Achiam et al.| [2023). Typically, these APIs operate under a cloud-based paradigm: user
queries are transmitted to powerful LLMs hosted on cloud servers. While effective, this architecture
places a heavy computational burden on the cloud, introduces non-negligible communication over-
head for users, especially in bandwidth-constrained environments, and does not utilize the potential
of local computation (Jin & Wu, |2024).

To alleviate these limitations, recent research has explored on-device LLMs, smaller models opti-
mized for deployment on user devices (Liu et al., 2024} Xu et al.|[2024; [Fang et al.,2025)). However,
due to their limited parameter volume, the lightweight on-device models often lag behind cloud
LLMs in terms of performance. This creates a critical trade-off between efficiency and accuracy.

To overcome this efficiency-accuracy trade-off, recent works have proposed collaborative frame-
works that combine on-device and cloud LLMs (He et al.l 2024} |Li et al., [2025). Within these
frameworks, a local router, typically implemented as a separate classifier, decides whether a request
should be processed by the on-device LLM or offloaded to the cloud (Ong et al.l [2025). This de-
sign leverages the efficiency of local inference (e.g., computation, communication) while retaining
access to the superior performance of the cloud LLM. However, the router itself requires additional
task-specific training on top of the on-device LLM’s post-training (Ding et al., 2024} |Yuan et al.
2025])), which increases system complexity and restricts adaptability across tasks. Moreover, decou-
pling routing from the on-device LLM prevents the model from jointly optimizing its own problem-
solving ability and collaboration, often resulting in a suboptimal balance between on-device and
cloud resource utilization. We therefore pose the following two-fold question:

! Purdue University % Yonsei University
For correspondence: fang375@purdue.edu

https://arxiv.org/abs/2509.24050v1

Under review

Using the numbers > We want to... Let's try smrﬂng wm.
(12, 77, 4 18]

(&) promet []resporse (1 Jrewors) ocorrect (D) catt o ilp () corret |
— - create n epuation Tnerefare the final expression is: </thin G
$H w 000 m Solving Problems Independently '\ that equals 100... <answer> (74 + 78) - (36 + 7) </answer>
N V4
2 -)) —) —) Solved by On-Device LLM
o

On-Device
w Solved by Cloud LLM
20 ——
=>18 = & _) 0% -0

Using the numbers [74, 78, 36, 7],
create an equation that equals 100... o Call for Help

LLM

Cloud
LLM

Solved by Call for Help

: .olg
LN PRV

(a) Our Training Framework

_) goo
=

et Upum (oo STy checklng it seems _
infea: slbl - Finally, I am stuck...

v,
<unknown> [I need external assistance}</unkn;

......................... » (b) Collaborative Inference

Figure 1: An illustration of our proposed RL-based unified training methodology and collaborative
inference framework. (a) Training Framework: Two main scenarios where the lightweight on-device
LLM learns to either solve problems independently or call for help. Note that the on-device LLM
is trained offline before deployment on devices. (b) Collaborative Inference: The on-device LLM
autonomously determines whether to process queries locally or invoke the cloud LLM.

Can the on-device LLM be trained to autonomously decide when to invoke the cloud LLM, and
can the acquisition of this routing capability be seamlessly integrated into the post-training stage
alongside task-specific optimization?

Challenges. Enabling on-device LLMs to autonomously decide when to invoke the cloud LLM dur-
ing post-training could eliminate the need for an external router and simplify training procedures,
yet achieving this capability presents several key challenges. First, on-device LLMs lack inherent
routing capability even after task-specific post-training such as supervised fine-tuning (SFT) (Wei
et al.| [2021) or reinforcement learning from human feedback (RLHF) (Ziegler et al.,2019). Second,
jointly optimizing routing with the model’s own problem-solving ability introduces a coupled learn-
ing challenge, where the on-device LLM must simultaneously improve its own task performance
while judiciously invoking cloud assistance. Third, collaborative inference is typically subject to
practical limits on the offloading ratio, which makes it challenging to balance cloud calls with local
computation. Overall, a comprehensive approach that jointly addresses task optimization, routing,
and offloading constraints in a unified post-training framework remains elusive.

1.1 CONTRIBUTIONS

Motivated by these observations, we propose a reinforcement learning (RL)-based unified frame-
work that enables the on-device LLM to both strengthen its own problem-solving ability and learn
routing strategies, by integrating routing optimization directly into the post-training process (Figure
[[). Concretely, we cast this as a reward maximization problem with a collaboration-aware hierarchi-
cal reward that assigns distinct reward signals to different responses, such as correct answers, wrong
answers, and calls for help, while imposing a constraint on the usage of the cloud LLM to mitigate
over-reliance. To solve this problem, we develop a group-adaptive policy gradient algorithm, char-
acterized by (i) an unbiased group-based policy gradient estimator for stable optimization and (ii)
adaptive prompt filtering to control cloud assistance.

Overall, we make the following contributions:

* Unified formulation for problem solving and routing. We formulate a reward maximization prob-
lem that integrates routing into the post-training process, enabling the on-device model to simul-
taneously enhance its own problem-solving ability and acquire routing strategies.

* Group-adaptive policy gradient algorithm. We propose a group-adaptive policy gradient algo-
rithm, featured by an unbiased group-based policy gradient estimator and adaptive prompt filter-
ing, to ensure stable optimization and avoid excessive reliance on the cloud LLM.

* Extensive validation. Through extensive experiments across diverse models and benchmarks, we
demonstrated that our approach consistently outperforms baselines, maintains stable training, and
significantly narrows the gap to full cloud LLM performance.

Under review

1.2 RELATED WORKS

Reinforcement learning for large language models. LLMs learn general language from large cor-
pora (Radford et al.,|2019; Brown et al., [2020), then are post-trained on task data to boost domain-
specific performance (Ouyang et al.| [2022). Post-training typically comprises SFT and RL-based
tuning. Interest in the latter has surged following DeepSeek-R1-Zero (Guo et al.| [2025), which
omits SFT and relies solely on RL-based tuning. RL-based post-training was introduced for LLM
alignment in (Ouyang et al., |2022), where Proximal Policy Optimization (PPO) is the primary al-
gorithm. However, due to PPO’s complexity and computational cost, simplified alternatives have
been proposed, including Direct Preference Optimization (DPO) (Rafailov et al., [2023), ReMax
(L1 et al., 2024b), and Reinforce-Leave-One-Out (RLOO) (Ahmadian et al., 2024). Among these,
Group Relative Policy Optimization (GRPO) (Shao et al., |2024) has gained particular traction for
its simplicity and stability: it removes the learned critic and instead estimates baselines from group
scores, reducing implementation complexity and variance while remaining competitive with PPO
in performance. While RL-based post-training has undergone notable development, incorporating
LLM coordination within this paradigm remains largely underexplored.

Collaboration of large language models. LLM collaboration aims to harness the complementary
strengths of multiple models to enhance performance and efficiency. One line of work focuses on
cascaded or ensemble-based routing across multiple LLMs. [Lu et al.| (2024) assumed LLMs have
heterogeneous expertise and propose a reward-guided routing method that learns to send each query
to the model most suited for it. |Chen et al.| (2023) designed a sequential LLM cascade where the
models generate responses and confidence scores for each query sequentially, and the process halts
once a response’s score exceeds a preset threshold. [Zhang et al.[(2024)) proposed a context-aware
cascading policy that selects models under budget constraints. Another direction focuses on the
collaboration of two LLMs, i.e., a weaker LLM and a stronger LLM. Specifically, Ding et al.|(2024)
fine-tuned a DeBERTa-v3-large model (He et al., 2020) to act as a router, which is anticipated to
predict when the small model’s output will match the large model’s quality. Similarly, Ong et al.
(2025) trained a router on human preference data to dispatch each query to either Mistral-8x7B or
GPT-4. Notably, Mistral-8x7B, with 46.7B parameters, remains too large for device deployment.
Despite these advances, most existing approaches rely on external routers or handcrafted policies,
leaving the device model’s intrinsic capacity for routing underutilized.

2 PROBLEM BACKGROUND

2.1 COLLABORATIVE FRAMEWORK FOR DEVICE-CLOUD LLMsS

Consider a task with prompt set D. The lightweight on-device LLM 7y, with tunable parameters 6
designed for efficient deployment, may still struggle to handle certain prompts in D even after task-
specific tuning, due to its limited capacity. To overcome this limitation, assistance from the cloud
LLM 7., which has a substantially broader knowledge scope, becomes essential. To maximize the
potential of collaborative device-cloud LLMs on task D, the most common solution is a two-stage
pipeline (Ding et al.l [2024; Ong et al.| 2025} [Yuan et al., |2025): (i) post-train the on-device model
Ty, initialized from a pretrained model, to improve task-specific performance, and (ii) optimize
a routing mechanism that decides, based on the relative capabilities of the on-device and cloud
LLMs, whether each prompt should be handled locally or offloaded. We briefly review the most
representative methods used for these two stages below.

Stage I: RL-based post-training. A leading technique for the first stage is GRPO. GRPO improves
the on-device LLM by reinforcing relatively stronger responses while discouraging weaker ones.
(Shao et al., 2024). Specifically, GRPO first samples a group of responses {y1,¥o,...,yg} for

each prompt x using the model. The rewards for these responses are denoted as {ry,r2,...,rg}.
The normalized relative advantage of each response in the group is then computed as
Ay = (ry — mean({r:}{y))/sd({r:}y). (D

The objective of GRPO is to optimize the model 7y to maximize the expected relative advantage.
The specific objective of GRPO is presented in Appendix [A] While such post-training strengthens
the model’s own problem-solving ability, it does not endow the model with the ability to decide
whether a prompt should be handled locally or offloaded, thereby necessitating a dedicated routing
mechanism.

Under review

Stage II: Routing optimization. For the second stage, the conventional approach is to train an
additional binary classifier, often implemented as another LLM, to make routing decisions. For each
prompt, a response is sampled from the on-device and cloud models, and the router is trained to
distinguish whether the on-device LLM can solve the prompt or if it should be offloaded to the cloud
LLM. Formally, given a dataset of prompts D, we assign binary labels z € {0, 1} indicating whether
the on-device model suffices for prompt x. The router is then trained by minimizing the binary cross-
entropy loss: (Ding et al,, 2024) L(w) = — 57 Yo up (210gpu (@) + (1 - 2)log(1 — pu())),
where py, () denotes the router’s predicted probability that the on-device LLM can handle x.

2.2 LIMITATIONS

The two-stage pipeline suffers from several inherent drawbacks. First, the router is essentially a bi-
nary classifier. It is inherently difficult for such a classifier to judge whether the on-device LLM can
solve a problem based solely on the prompt’s surface pattern, since problems with similar structures
may vary greatly in difficulty. Conversely, using a more powerful LLM with reasoning ability as the
router would be inefficient and wasteful, since making a routing decision would require duplicat-
ing the reasoning process that should be performed by the on-device LLM. This redundancy adds
unnecessary computation and storage overhead without contributing to solving the task. Finally,
training and maintaining the router introduce additional engineering overhead, adding complexity
to the system.

3 A UNIFIED TRAINING FRAMEWORK WITH REINFORCEMENT LEARNING

3.1 RL-BASED FORMULATION

To address these limitations, we introduce a unified perspective that embeds routing optimization
into post-training, allowing the on-device LLM to improve its problem-solving ability while also
learning routing strategies. Through fine-tuning parameters @ of 7y, the on-device model not only
strengthens its own problem-solving ability but also learns when to delegate to the cloud model .
Specifically, we anticipate the on-device LLM first attempts to generate a response locally and only
invokes the cloud model 7, at the end when it expects a better outcome. The resulting response y
may be produced entirely by 7y (i.e., y = y%), or jointly with 7. (i.e., y = [y, y°]).

To formalize this unified perspective, we cast training as a reward maximization problem, where the
model seeks to optimize task performance subject to a budget on cloud model usage. This yields the
following objectiveﬂ

max Exnp [R(0,)] := EgxDEyo wrp () [1(2, Y)] o
subject to E[1{y ~ (mg, 7c)}] < pE[L{y ~ ma}],

where D is the prompt set, r(x, y) denotes the reward assigned to response y under prompt &, and
E[1{y ~ (mp,7.)}] and E[1{y ~ mp}] represent the frequencies of invoking the cloud LLM and
generating the response solely with the on-device LLM, respectively. We assume the cloud model 7,
generates deterministically without adding stochasticity to training (Shi et al.,[2024). The constraint
in Problem (2), governed by p, restricts the usage ratio between cloud and on-device LLMs, thereby
limiting over-reliance on the cloud LLM and encouraging the on-device LLM to solve problems
independently. Notably, we compute the reward over the entire response to reflect overall response
quality, but update the on-device LLM 7y using its generated portion.

3.2 PROMPT AND REWARD DESIGN

The prompt and the reward function r(x, y) are two key components of Problem . In this subsec-
tion, we describe how we design the prompt template and reward to encourage the on-device model
my to invoke the cloud model 7. when the task falls outside its capabilities.

Prompt template. As a next-token prediction model, an LLM tends to generate answers automat-
ically, even when uncertain or incorrect. Without a dedicated prompt, it may fail to recognize its

"Note that on-device LLM is trained offline before deployment.

Under review

knowledge limitations and produce unreliable responses. To address this, we design a prompt tem-
plate that guides the model to answer only when confident, and to invoke the cloud LLM for help
when the question lies beyond its capabilities. The template is shown in Table 2] of Appendix

Reward design. Following the seminal work (Guo et al.| 2025), we adopt a rule-based reward.
To both foster effective coordination with the cloud LLM and maximize the on-device LLM’s own
problem-solving ability, we design a collaboration-aware hierarchical reward scheme comprising
three components: format, accuracy, and coordination rewards, as detailed below.

* Format reward: This reward evaluates whether the on-device model 7y’s output follows the struc-
ture specified in the prompt. In particular, if the reasoning process is enclosed within <think>
tags and the final answer is placed within <answer> tags, a format reward of oy is assigned.

* Accuracy reward: This reward reflects the correctness of the response of the on-device model 7g.
If the answer extracted from the on-device model 7y’s response is correct, an accuracy reward of
Q, is assigned.

* Coordination reward: If the on-device model determines that it cannot solve the problem on its
own and invokes the cloud LLM for assistance, a coordination reward of «. is assigned, provided
that the cloud LLM produces a correct answer.

We summarize all reward cases in () of Appendix [B] In general, the reward weights satisfy o, >
o > oy, reflecting the priority of accuracy over coordination and format.

3.3 GRPO FAILS TO COORDINATE ON-DEVICE AND CLOUD LLMS COLLABORATION

To jointly enhance task performance and collaboration, a natural approach is to optimize the on-
device LLM my using GRPO, a state-of-the-art post-training algorithm, together with the proposed
collaboration-aware reward (Section [3.2).

)

Initial investigation with GRPO. We take Qwen2.5-3B- * 0
Instruct as the on-device model and DeepSeek-R1 as the ™ wE
cloud model. As the evaluation benchmark, we adopt the E" -
Countdown task (Pan et al.,|2025)), a mathematical puzzle in 5 :: “ %‘
which players must combine a given set of numbers using N —— Reward -
the four basic arithmetic operations (+, —, x, =) to reach | —— Gliorclowdniol] ' 5
a specific target number. For instance, given the numbers “ Training iterations

75, 6, 2, and 3 with a target of 152, one valid solution is:
(75 + 3) x 6 + 2 = 152. This task provides a wide range
of problems with varying levels of difficulty, making it par-
ticularly suitable for the on-device and cloud LLMs collab-
oration settings. The reward parameters in Section are
setas aq = 2, o, = 0.5, and oy = 0.2. Figure@]illustrates
the evolution of the training reward and the call-for-cloud
ratio with respect to training iterations.

Figure 2: Rewards and call-for-cloud
ratios versus training iterations. A
naive approach offloads every predic-
tion to the cloud server (i.e., a 100%
call-for-cloud ratio), which violates
the practical offloading constraints.

Discussion. As shown in Figure 2] the model trained with GRPO tends to converge to a low-quality
suboptimal point that frequently calls for assistance from the cloud LLM. This behavior can be
attributed to the following two factors:

* Misalignment of normalized advantage with true rewards: The normalized advantage used in
GRPO, i.e., , can distort the actual value of different responses, which is problematic in our
collaborative setting with hierarchical rewards. For instance, consider two groups of responses
to the same prompt: Group A with rewards [2.2,0,0,0,0,0,0,0] and Group B with rewards
[0.5,0,0,0,0,0,0,0], where 2.2 and 0.5 correspond to producing a correct answer independently
and invoking the cloud model for assistance, respectively. After normalization, the advantages of
the highest-reward responses in both groups are the same, despite the clear superiority of the 2.2
response. This causes the model to treat both responses as equally valuable, failing to recognize
the greater merit of the independent correct answer.

* Lack of penalty for over-reliance on the cloud LLM: GRPO does not account for the constraint on

invoking the cloud LLM. Since the assistance-invoking pattern is comparatively easy to learn, the
model tends to overuse it, which leads to premature convergence to an undesirable policy.

Under review

Algorithm 1 Collaborative Unified Training Framework with Group-Adaptive Policy Gradient

Require: Initial on-device LLM 7y with parameters 8, cloud LLM 7., and prompt set D
1: for iteration in {1,2,...,5} do
2: Sample a batch of prompts D, from D

3: Sample G responses {y{,y5,...,y%} ~ m4(- | x) for each prompt = € D,
4: for each prompt € D, do
5: if any response in {yY, ..., y%} calls for help then
6: Query cloud LLM 7, to obtain y© ~ 7.(- |) > at most once for each prompt
7: for each help-calling response y; do
8: Sety; « [y?,y°] > collaborative generation
9: end for
10: else
11: Keep y; < y! fori € {1,2,...,G}
12: end if
13: Evaluate rewards for responses {y; }& ; based on
14: end for
15: Select prompts with both positive and negative responses, denoted as D}
16: Select up to p|Dj| prompts for which none of the responses from 7, are correct, but 7.

yields a correct answer, denoted as Dg
17. Update 0«0 + mzmepiupg VoR(0,x)
18: end for

3.4 PROPOSED GROUP-ADAPTIVE POLICY GRADIENT ALGORITHM

To address the issues encountered by GRPO, we propose the Group-Adaptive Policy Gradient
(GAPG) algorithm, tailored to the objective of Problem (2), which is featured by group-level pol-
icy gradient, designed to yield an unbiased gradient estimator of the optimization objective, and
adaptive prompt filtering, developed to enforce the budget constraint on cloud LLM usage. We in-
troduced these two components in Sections [3.4.1and [3.4.2] respectively, and summarize the overall
procedures in Algorithm [T}

3.4.1 GROUP-LEVEL POLICY GRADIENT

The reward function r(x, y) is non-differentiable with respect to the model parameters 6 as it does
not admit an analytic expression in terms of 8. Consequently, standard gradient-based optimiza-
tion algorithms cannot be directly applied. To address this challenge, we consider the expected
reward defined in (2) and derive an unbiased gradient estimator. Different from conventional policy
gradient methods (Bartol [2021)), we introduce a group-level gradient estimator inspired by GRPO.
Proposition states the formulation, and its derivation, given in Appendix |C] primarily employs
the log-likelihood trick (Williams), [1992)).

Proposition 3.1 (Unbiased group gradient estimator) Given a prompt x, draw a group of G re-
sponses {yu, . ..,Yc}, where each response y; may be produced entirely by the on-device policy g
(i.e.y; = yf) or jointly with the cloud policy 7. (i.e. y; = [yf ,Y5]). Denote the reward for response
iasr; = r(x,y;) and the group mean reward ¥ = & EZG:1 r;. For any G > 2, the following
quantity

VoR(6,z) =

il ng logm(y‘.9 | :c)(n — F) 3)
G-1G P

is an unbiased estimator of the policy gradient Vo R(0,x) = VoEyo () [r(z,y)].
With this gradient estimator, we can update the on-device LLM using stochastic gradient ascent:

0<—9+77€o7%(0,m), x ~ D,

iteratively, where 7 is the learning rate. However, since this gradient is estimated from a single
prompt, it suffers from high variance and does not account for the constraint on frequency of invok-
ing the cloud LLM in Problem (2).

Under review

3.4.2 GROUP-ADAPTIVE PROMPT FILTERING

To further encourage the on-device LLM 7y to explore and limit the frequency of invoking the cloud
LLM 7., we introduce an adaptive prompt filtering mechanism, guided by the constraint in Problem
(2). The filtering mechanism focuses training on prompts that are most informative for learning the
trade-off between independent problem solving and calling for external assistance. Specifically, in
each training round, we sample G responses for each prompt « € D, using models [y, 7.]. Based
on the response quality, we form two prompt subsets:

* Set D} : Includes prompts where at least one of the G sampled responses is generated correctly by
the on-device model my. These prompts help the model learn to solve tasks on its own.

* Set D?: Includes up to p|D}| prompts for which none of the sampled responses from on-device
model 7y are correct, but the cloud LLM 7, provides a correct answer. These prompts are essential
for guiding the model to identify situations in which leveraging the cloud LLM is beneficial.

By training g on D} UD7 (i.e., Step 17 of Algorithm, the on-device LLM receives complementary
learning signals for both independent problem solving and calling for assistance. This adaptive
filtering serves as a targeted curriculum, enabling the model to make effective offloading decisions
under the budget constraint.

4 EXPERIMENTS

Datasets. We fine-tune and test on-device LLMs on Countdown (Pan et al., 2025) and MATH-
lighteval (Hendrycks et al., 2021). Additionally, we evaluate the models fine-tuned on the MATH-
lighteval dataset against four widely used mathematical benchmarks: MATH-500 (Hendrycks et al.,
2021), AMC23 (Lewkowycz et al., 2022), AIME24, and MinervaMath (L1 et al., [2024a)).

On-device and cloud LLMs. We employ Deepseek-R1 as the cloud model. For the Countdown
task, we adopt Qwen2.5-3B-Instruct as the on-device model. For the MATH-lighteval task, we use
on-device models of different sizes, Llama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct, and Llama-3.2-
3B-Instruct. In Section the call-for-cloud ratio is constrained to 30% (i.e., p/(1 + p)) for all
device-cloud collaboration scenarios, with requests exceeding this threshold redirected to the on-
device LLM. Section[4.2]builds on this setting and further studies the impact of varying the ratio on
performance.

Baselines. We compare our approach against the following baseline methods.

* Cloud LLM: All the queries are offloaded to the cloud model, i.e, Deepseek-R1 (Guo et al.,[2025)),
which serves as a performance upper bound.

* Task-Tuning Only: Perform task-specific fine-tuning on the on-device model using GRPO (Shao
et al.| 2024)). During inference, all predictions are made using the on-device LLM.

* Task-Tuning&Naive Offloading: The on-device LLM is first fine-tuned in the same way as in
Task-Tuning Only, and then used in collaboration with the cloud LLM. During inference, a certain
proportion of queries are randomly offloaded to the cloud LLM.

* Task-Tuning&Router: A two-stage approach where the on-device LLM is first fine-tuned as in
Task-Tuning Only, and then an additional router (DeBERTa-v3-large) is trained to decide whether
to use the on-device or the cloud LLM (Ding et al., 2024).

* Collaboration-Aware Tuning: The on-device LLM is fine-tuned with the GRPO algorithm, aug-
mented by our proposed hierarchical reward (i.e., (3)) to encourage collaboration. Further details
are provided in Section[3.3]

Other Details. All the experiments are conducted on a cluster equipped with 4 NVIDIA A100
GPUs, each with 80 GB of memory. The detailed hyperparameters are provided in Appendix D}

4.1 COUNTDOWN TASK: COMPARISON USING QWEN2.5-3B

Figure 3] compares the training reward and testing accuracy of our approach and the baselines on
the Countdown task using the Qwen2.5-3B-Instruct model. Since Task-Tuning&Naive Offload-
ing and Task-Tuning&Router employ the same RL process as Task-Tuning Only for tuning the

Under review

—e— Ours —e— Collaboration-Aware Tuning —&— Task-Tuning Only —8— Task-Tuning&Naive Offloading Cloud LLM —%— Task-Tuning&Router
100
&
X
15 < 80 *
z
2 g
S10 Z 60
3 Q
2 <
en 40
0.5 T =
7
£ 50 L~
0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Training iterations Training iterations
(a) Reward versus training iterations (b) Testing Accuracy versus training iterations

Figure 3: Training reward and testing accuracy on the Countdown task with Qwen2.5-3B-Instruct.
Our method consistently outperforms baselines, achieving higher rewards and accuracy.

on-device LLM, we report only the reward of Task-Tuning Only in Figure 3{a). As shown in Fig-
ure [3[a), the baseline Collaboration-Aware Reward converges to an always-call-for-cloud policy in
this task, which is also discussed in Section[3.3] Additionally, both Task-Tuning Only and our pro-
posed method exhibit similar reward growth in the early stages. However, after approximately 200
steps, our approach consistently outperforms the baseline and maintains a clear margin as training
progresses. Turning to Figure 3{b), we compare the testing accuracy, which further confirms the
consistent superiority of our approach over the baselines.

Figure B{b) compares the testing accuracy versus the baselines. Note that the Router is trained
only after completing task-specific training; therefore, we report only the final accuracy of Task-
Tuning&Router in Figure 3{b). As shown in Figure [3[b), our method achieves performance ap-
proaching that of the Cloud LLM and surpasses all baselines. In particular, it improves accuracy
by approximately 30%, nearly matching the cloud offloading rate, relative to Task-Tuning Only.
This demonstrates that our approach equips the on-device model with coordination ability without

compromising its problem-solving ability, highlighting the effectiveness of our collaborative unified
training methodology.

4.2 MATH TASK: COMPARISON ACROSS QWEN2.5-1.5B AND LLAMA-3.2 MODELS

—— Ours —— Collaboration-Aware Tuning —— Task-Tuning Only Task-Tuning&Naive Offloading —%— Task-Tuning&Router
80
~60 _80 _
B B S5
250 * 260 2
51 51 g 60
3 3 3
<% <40 <50
on on on
30 .8 £ 40
2 b Z 20 2
= = =
20 30
0 200 400 600 0 200 400 600 0 200 400 600
Training iterations Training iterations Training iterations
(a) Llama-3.2-1B-Instruct (b) Qwen-1.5B-Instruct (c) Llama-3.2-3B-Instruct

Figure 4: Testing accuracy versus training iterations on the MATH-lighteval dataset. Our method
consistently outperforms baselines across three on-device models, while also exhibiting stable train-
ing behavior, demonstrating its effectiveness and robustness.

Training dynamics. We further evaluate our approach on the MATH-lighteval dataset using three
on-device models of varying sizes (1B, 1.5B, and 3B), with the testing accuracy curves across train-
ing iterations shown in Figure] Unlike on Countdown, Collaboration-Aware Tuning does not
collapse on MATH-lighteval, likely because the initial models possess stronger prior knowledge
of this widely used benchmark, which makes them less vulnerable even under biased fine-tuning.
While our method initially lags behind some baselines in the early training phase, it consistently
surpasses them as training progresses and ultimately achieves the highest accuracy across all model
sizes. By contrast, Task-Tuning&Router exhibits noticeably worse performance, as the router fails
to provide effective offloading decisions. A potential reason is that problems in this task are often

Under review

Table 1: Accuracy (%) of our approach and baselines, tuned on MATH-lighteval and evaluated on
five math benchmarks. Our method achieves the highest average accuracy across both models.

Model Method MATH-lighteval MATH-500 AMC23 AIME24 MinervaMath Avg.
Cloud LLM 98.4 97.3 97.5 79.8 80.9 90.8

Task-Tuning Only 56.1 54.8 35.0 0.0 20.6 33.3

Task-Tuning&Naive Offloading 67.2 67.4 50.0 23.3 38.2 49.2

Collaboration-Aware Tuning 61.5 61.2 35.0 23.3 33.5 42.9

Qwen2.5-1.5B-Instruct 1. 4 T ning&Router 63.0 72.2 55.0 23.3 35.3 198
Ours 78.0 81.6 57.5 23.3 40.8 56.2

Task-Tuning Only 51.2 43.0 27.5 10.0 19.1 30.2

Task-Tuning&Naive Offloading 65.1 59.0 45.0 30.0 37.1 47.2

Llama-3.2-3B-Instruct Collaboration-Aware Tuning 66.8 59.6 42.5 30.0 36.8 471
- Task-Tuning&Router 61.2 61.0 45.0 23.3 31.2 44.3

Ours 79.5 68.6 525 333 434 555

structurally similar, and the prompt alone does not reliably indicate their difficulty. Additionally, the
slower early-stage convergence of our approach arises because our methodology explicitly balances
on-device LLM’s own problem-solving ability with cloud LLM coordination. Nevertheless, as Fig-
ure [4] demonstrates, this joint optimization yields clear long-term benefits: our approach converges
to substantially higher accuracy, underscoring its effectiveness.

Evaluation outside the training task. Beyond MATH-lighteval, we report the performance of the
tuned Qwen2.5-1.5B and Llama-3.2-3B models on four additional widely used mathematical bench-
marks in Table[T] As shown, our method achieves the highest accuracy across all benchmarks, with
average improvements between 6 and 8 points compared to baselines, demonstrating that the coor-
dination ability acquired through our approach generalizes well to new tasks. We also observe that
while baselines Collaboration-Aware Tuning or Task-Tuning&Router sometimes achieve competi-
tive performance on individual datasets, they fail to maintain consistent accuracy across all bench-
marks. In contrast, our approach yields balanced improvements across both easier (MATH-lighteval,
MATH-500) and more challenging datasets (AMC23, AIME24, MinervaMath).

Impact of call-for-cloud ratio. In Figure |5 we 100
evaluate the impact of the call-for-cloud ratio on
the testing accuracy. As shown in Figure [5] our
method achieves the strongest performance across
all ratios, delivering notable gains even with mod-
erate cloud reliance (20-40%) and nearly matching
the Cloud LLM at 60%. In contrast, Collaboration-
Aware Tuning suffers performance degradation at
low ratios (e.g., 20%), as it fails to effectively bal-
ance the development of coordination with strength-
ening problem-solving. Meanwhile, the perfor-
mance of Task-Tuning&Naive Offloading and Task- Figure 5: Impact of call-for-cloud ratio on
Tuning&Router improves steadily but consistently accuracy. Our approach rapidly narrows the
remains inferior. Overall, the proposed collabora- gap to Cloud LLM as the ratio increases
tive unified training consistently outperforms sepa-

rate routing and naive offloading over a wide range of call-for-cloud ratios.

60

/ —e— Ours
il ittt —e— Collaboration-Aware Tuning

—e— Task-Tuning&Naive Offloading
—#— Task-Tuning&Router

Cloud LLM
-=~ Task-Tuning Only

Testing Accuracy (%)
2

&
=

[
&

20 80 100

40 60
Call-for-cloud ratio (%)

5 CONCLUSION

We proposed a collaborative device-cloud LLM inference framework where the on-device LLM
itself decides whether to invoke the cloud LLM at the end of its solving process. To endow this
capability, we formulated a reward maximization problem that integrates routing optimization into
post-training, enabling the on-device LLM to strengthen its problem-solving ability while devel-
oping coordination with the cloud LLM. To solve this problem, we developed a group-adaptive
policy gradient algorithm with a group-level policy gradient for unbiased optimization and adaptive
prompt filtering to constrain cloud usage. Through extensive experiments across diverse models
and benchmarks, we demonstrated that our approach consistently outperforms baselines, maintains
stable training, and significantly narrows the gap to full cloud LLM performance.

Under review

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in LLMS. arXiv preprint arXiv:2402.14740, 2024.

Andrew G Barto. Reinforcement learning: An introduction. by richard’s sutton. SIAM Rev, 6(2):
423, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Riihle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. In The Twelfth International Conference on Learning Representations, 2024.

Wenzhi Fang, Dong-Jun Han, Liangqi Yuan, Seyyedali Hosseinalipour, and Christopher G Brinton.
Federated sketching LoRA: On-device collaborative fine-tuning of large language models. arXiv
preprint arXiv:2501.19389, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-R1 incentivizes reasoning in LLMs through rein-
forcement learning. Nature, 645(8081):633-638, 2025.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Ying He, Jingcheng Fang, F Richard Yu, and Victor C Leung. Large language models (LLMs) infer-
ence offloading and resource allocation in cloud-edge computing: An active inference approach.
IEEE Transactions on Mobile Computing, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2021.

Hongpeng Jin and Yanzhao Wu. CE-collm: Efficient and adaptive large language models through
cloud-edge collaboration. arXiv preprint arXiv:2411.02829, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024a.

Senyao Li, Haozhao Wang, Wenchao Xu, Rui Zhang, Song Guo, Jingling Yuan, Xian Zhong, Tian-
wei Zhang, and Ruixuan Li. Collaborative inference and learning between edge slms and cloud
LLMs: A survey of algorithms, execution, and open challenges. arXiv preprint arXiv:2507.16731,
2025.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In International Conference on Machine Learning, pp. 29128-29163. PMLR, 2024b.

10

Under review

Zechun Liu, Changsheng Zhao, Forrest landola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimiz-
ing sub-billion parameter language models for on-device use cases. In Forty-first International
Conference on Machine Learning, 2024.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 1964-1974, 2024.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route LLMs from preference data.
In The Thirteenth International Conference on Learning Representations, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229-256, 1992.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device
language models: A comprehensive review. arXiv preprint arXiv:2409.00088, 2024.

Liangqi Yuan, Dong-Jun Han, Shigiang Wang, and Christopher G Brinton. Local-cloud infer-
ence offloading for LLMs in multi-modal, multi-task, multi-dialogue settings. arXiv preprint
arXiv:2502.11007, 2025.

Xuechen Zhang, Zijian Huang, Ege Onur Taga, Carlee Joe-Wong, Samet Oymak, and Jiasi Chen.
Efficient contextual 1lm cascades through budget-constrained policy learning. Advances in Neural
Information Processing Systems, 37:91691-91722, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

11

Under review

A TRAINING OBJECTIVE OF GRPO

The trajectory-level normalized relative advantage defined in (I]) is assigned to each token, i.e.,
A;+ = A;. Accordingly, the training objective of GRPO is given by

il
o \Yit | = yz<t)
ma E A;
X LonD {4}~y (2)G Z i Z{ L%d (y” | x ,Yi <t) (2

clip (mo (Yie | @, y““) d—e 1+ z—:) Ai,t} — ADy [m||7rref]} ,
T o1 (yi,t | z, yi,<t)

where g, denotes the stale policy used for sampling, and 7 is the reference model, typically set
to the initial policy to penalize deviations from the starting point. The hyperparameters ¢ and
control the clipping range and the strength of KL regularization, respectively.

“4)

B PROMPT TEMPLATE AND REWARD DETAILS

Prompt. We design two prompt templates that explicitly instruct the model to answer only when
confident, as shown in Table [2| Template II provides stricter guidance than Template I and can be
applied when the model fails to recognize its knowledge limitations under Template I.

Table 2: Prompt templates for training the on-device LLM in the collaborative device—cloud frame-
work. The placeholder question and number will be replaced with the actual question and an appro-
priate number during training.

Template 1. System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your reasoning in
<think> </think> tags. And return the final answer in <answer> </answer> tags at
the end. If you did not find a solution after a thorough reasoning process, you can ask for exter-
nal assistance at the end, for example, <unknown> I need external assistance </unknown>.
User: question. Let me solve this step by step.

Template I1. System prompt: You are given a math problem. Solve it step by step. Organize
your thoughts using this format: Step 1: ..., Step 2: ..., Step 3: ..., and so on. Put your final
answer within \boxed{ }. If you cannot solve the problem after number reasoning steps, stop
reasoning and return: <unknown> I need external assistance </unknown>.

User: question. Let’s think step by step.

In our experiments, we use Template I for the Countdown task and Template II for the MATH-
lighteval task. The tunable hyperparameter number is set to 6.

Reward. All possible rewards discussed in Section are summarized in the following equation,
which integrates the three components of our collaboration-aware reward design, format, accuracy,
and coordination, to jointly enforce structural correctness, problem-solving accuracy, and effective
device—cloud collaboration:

ogtayp, ify= y? contains the correct answer and follows the required format

Qgq, if y = y? contains the correct answer but violates the format

r(z,y) =< a, if y = [y?, y°] contains the correct answer 5)
ag, if y = y? does not contain the correct answer but follows the format
0, otherwise.

C PROOF OF PROPOSITION[3.1]

Recall the estimator

G c
VoR(6,x) = Z{Velogﬂeyzm)}(—7), f=é2’v‘-

12

Under review

Because each y! ~ mp(z) and [7 (y | =) dy = 1, the following identity holds for every i:
Eygwm(m){% log o (9! | m)} = /We(y |)V logmo(y | x) dy
— [Vimily |) dy

=%/m@mMy
= 0.

(6)

Following the log-likelihood trick, we have
Enyﬂ'e(w) Vo log o (yze | w) 'f’(iL’, yz)] = /7(-9 (yze | x)VG log uy; (ye ‘ w) 7"(15, y) dy

:/w@wﬂwdaw@
(7
= Ve/ﬂe(yg |) (=, y)dy

= VGEygmﬂg(w) [T(.’B, y)]
= VoR(0,x).

Using linearity of expectation, we have

_ G 1< o ,
IE[V@R(O,:E)] = ZE[VQ log my(y; |) (ri - T)] :

G-1G -
Because the G terms are identically distributed, replace the sum by a single expectation:

— G
E[VoR(6,x)] =a_1 E [V log mo(y! |) (r—7)]
G E | Vi log 7y (e\x)((l—i)r —iZT»)
=1 o log me (yq ¢/ -G j ®)
i#1
1
=E[Vy log 7o (! | x)ry] + o-1 ZE[% log 7o (! | x)r;)] .
i#1
For the term with 74, following , we have
]E[Vg logﬂg(yf |) rl] =VWVWR(0,x). 9)
For the term with 7, j # 1, the random variables Vj log 7r9(y{ |) and r; are independent, giving
E[Vy log 7o (y? | z)r;] =r;-E[Vjlog mo(y? | z)]
= O,
where the second inequality comes from (6). Plugging (9) and into (8] gives rise to

(10)

E[VoR(6,2)] = V4R(0,).
This completes the proof.
D DETAILS ON HYPERPARAMETERS AND DATASETS

Details on Hyperparameters. Unless stated otherwise, the hyperparameters used for the Count-
down task under the Qwen2.5-3B-Instruct and MATH-lighteval task under Llama-3.2-1B-Instruct,
Qwen2.5-1.5B-Instruct, and Llama-3.2-3B-Instruct are as follows.

13

Under review

Table 3: The hyperparameters for the Countdown task under the Qwen2.5-3B-Instruct model and
the MATH-lighteval task under Llama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct, and Llama-3.2-3B-
Instruct models.

Hyperparameter | Countdown & Qwen Math-lighteval & LLaMA-3.2-1.5B/Qwen-2.5-1B/LLaMA-3.2-3B
Batch size |Dy| | 32 128
Group size G | 8 8

Max prompt length | 256 1024
Max response length | 720 1024
Learning rate 7 | 5e-6 2e-6
Total training steps S | 1000 1160/780/780
Sampling temperature for training | 1.0 1.0
Sampling temperature for evaluation | 0

Format reward | 0.2

Accuracy reward | 2

Coordination reward | 0.5 0.2/0.3/0.6
Cloud-device usage ratio p | 3/7 3/7

Details on Datasets. We fine-tune the on-device LLM on two datasets, Countdown (Pan et al.,
2025) and MATH-lighteval (Hendrycks et al., 2021])), respectively. The Countdown task is an arith-
metic puzzle where the model must combine a given set of numbers using basic arithmetic operations
(+, —, X, +) toreach a specified target number. We randomly select 6,000 problems from the Count-
down dataset, using 5,000 for training and 1,000 for testing. The MATH-lighteval dataset comprises
12,500 problems drawn from mathematics competitions, covering topics such as algebra, geometry,
counting and probability, number theory, and precalculus. We use 7,500 samples for training and
5,000 for testing. Additionally, we evaluate the models fine-tuned on the MATH-lighteval dataset
against four widely used mathematical benchmarks: MATH-500 (Hendrycks et al.} [2021), AMC23
(Lewkowycz et al.l 2022), AIME24, and MinervaMath (Li et al., 2024a)).

E CASE STUDY: COMPARISON OF THE RESPONSES

We present representative responses generated by the on-device LLM fine-tuned under differ-
ent strategies. For illustration, we focus on the Countdown task with the Qwen2.5-3B-Instruct
model. Since the three baselines, Task-Tuning Only, Task-Tuning&Naive Offloading, and Task-
Tuning&Router, use the same on-device LLM, we report on-device results only under Task-Tuning
Only.

Case Study for Countdown & Qwen2.5-3B-Instruct: I

User: Using the numbers [74, 78, 36, 7], create an equation that equals 33. You can use basic
arithmetic operations (4, —, *, /) and each number can only be used once. Let’s think step
by step.

14

Under review

Cloud LLM

System prompt: None

Response: I need to use the numbers 74, 78, 36, and 7 to make 33. I can use
addition, subtraction, multiplication, and division, and I have to use each number
exactly once.

First, I should think about what operations might get me close to 33. Since 33 is a
relatively small number compared to 74 and 78, I probably need to subtract or divide
the larger numbers to reduce them.

Maybe I can subtract two large numbers to get a small number. For example, 78 —
74 = 4, which is too small, and I have 36 and 7 left. I need to incorporate all
numbers, so that might not work directly.

I could multiply or divide to get closer. 36 is already close to 33, so if I can adjust
it with the other numbers, that might work. For instance, 36 — 3 is 33, but I need to
get 3 from somewhere.

I have 7 and the other numbers. 7 — 4 = 3, but I need to get 4 from somewhere. If |
use 78 and 74, 78 — 74 = 4, but then I have used 78 and 74 to get 4, and I have 36
and 7 left. If Ido 7 — 4 = 3, but I need to use 36. So perhaps 36 — (7 — (78 — 74)),
but that would be 36 — (7 — 4) = 36 — 3 = 33. But I have used all numbers: 74, 78,
7, 36. Let me write that as an equation.

36— (7—(78—74)) =36 —(7—4) =36 —3 =33. Perfect!
But I need to make sure that the operations are clear and that I use each number once.
In this case, I have used 78, 74, 7, and 36. The expression is 36 — (7 — (78 — 74)).
I should write it properly. Since subtraction is not associative, I need to use paren-
theses to ensure the order of operations.
So, the equation is:

36— (7—(78—74)) =33

I can simplify the inner part: 78 — 74 = 4, then 7 — 4 = 3, then 36 — 3 = 33. Yes.
I think this works. But let me see if there are other ways, but this seems straightfor-
ward.
The problem says “create an equation”, so I should present it as an equation.
So, using the numbers, I have:

36 — (7 — (78 — 74)) = 33

But I used the numbers in the order: 36, 7, 78, 74. And I used each once.
I think this is correct.
Justification: Correct Answer

15

Under review

On-device LLLM under Task-Tuning Only

System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your
reasoning in <think> </think> tags. And return the final answer in <answer>
</answer> tags at the end.

Response: <think> First, we notice that we have four numbers [74, 78, 36, 7].
We need to create an expression using these numbers exactly once that results in 33.
Starting with multiplication 74 * 36 = 2664, which is too large. The quotient when
74 is divided by 36 is approximately 2.0556. Multiplying 2.0556 by 78 gives us
approximately 159.9968, still far from 33. Now, let’s try using 78 and 36 together.
Dividing 78 by 36 gives us approximately 2.1667, and multiplying by 7 gives us
approximately 15.1667. This is closer but still not 33. Let’s try another approach
focusing on individual numbers: What if we use 74 - 78 + 36? This gives us -4 + 36
= 32, which is very close to 33. We can add 1 more to make it exactly 33. Since
we have the remaining 7 available, 36 + 7 = 43, but we need to adjust our thinking.
Let’s check: 74 - 78 + 36 + 7 does not give us 33. I will now use 74 + 78 - 36 -
7./<think> <answer> (74 +78) - 36 + 7) </answer>

Justification: Wrong Answer

On-device LLLM under Collaboration-Aware Tuning

System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your rea-
soning in <think> </think> tags. And return the final answer in <answer>
</answer> tags at the end. If you did not find a solution after a thorough
reasoning process, you can ask for external assistance at the end, for example,
<unknown> I need external assistance </unknown>.

Response: First, I will check if any combination of these numbers directly equals
33. <unknown> I need external assitance</unknown>

Justification: Call for help from the cloud LLM

16

Under review

On-device LLLM under our methodology

System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your rea-
soning in <think> </think> tags. And return the final answer in <answer>
</answer> tags at the end. If you did not find a solution after a thorough
reasoning process, you can ask for external assistance at the end, for example,
<unknown> I need external assistance </unknown>.

Response: <think> We want to reach 33 using the numbers [74, 78, 36, 7] with
each used exactly once. Start by checking a few natural pairings:36 * 7 = 252,
78 x 7 = 546, 78 * 36 = 2808, which are not useful. Let’s try a different way,
78 — 36 = 42. To get 33 we’d need 42 — 9 from 74 and 7, but it seems infeasible.
Let’s try another way: 74 — 36 = 38. We’d need 38 — 5 from 78 and 7. Since
78 +7 =285and 78 — 7 = 71 78/7 ~ 11.14, this way can not lead to the correct
combination. Finally, I am stuck without any successful combination of the given
numbers using basic arithmetic operations exactly once. </think> <unknown>
I need external assistance </unknown>.

Justification: Call for help from the cloud LLM

Takeaway: While Task-Tuning produces an incorrect answer, both our method and
Collaboration-Aware Tuning successfully recognize the limitation of the on-device model
and proactively call for help from the cloud LLM.

Case Study for Countdown & Qwen?2.5-3B-Instruct: 11

User: Using the numbers [12, 77, 4,15], create an equation that equals 100. You can use
basic arithmetic operations (+, —, %, /) and each number can only be used once. Let’s think
step by step.

17

Under review

Cloud LLM

System prompt: None

Response: I need to use the numbers 12, 77, 4, and 15 to make 100 using only
basic arithmetic operations: addition, subtraction, multiplication, and division. Each
number can only be used once.

First, I should think about what combinations might get me close to 100. Since 100
is the target, and I have 77, which is fairly large, maybe I can use that as a base and
adjust with the other numbers.

77 plus something is 77, but I need 100, so 77 4+ 23 = 100, but I don’t have 23. 1
have 12, 4, and 15. 12+ 11 = 23, but I don’t have 11. 15+ 8 = 23, but no 8. Maybe
multiplication or division.

Another idea: 100 is 4 times 25, but I don’t have 25. I have 15 and 12, which are
close, but not 25.

Perhaps I can use division to get fractions or something, but since 100 is a whole
number, I probably need to avoid fractions or use them in a way that cancels out.
Let me list the numbers: 12, 77, 4, 15.

I know that 75 + 25 = 100, but I have 77 and 15, which are close. 77 — 2 = 75, but
I don’t have 2. I have 4 and 12, so 12/6 = 2, but I don’t have 6. I need to use all
numbers.

Maybe multiplication: 12 x 8.333... but that doesn’t help. 15 x 6.666... no.
Another thought: 100 = 100, so perhaps 77 + 23, and 23 can be from 15 and §, but
no 8. 12 + 11, no.

Perhaps (77 4+ 23) but how to get 23 from 12, 4, 15.

15+8 =23,butno 8. 4 x 2 = 8, but I need to use 12, so if I use 4 x 2, I don’t have
2, and I have 12 left, which might be used for something else.

I need to use all four numbers in one expression.

Perhaps (77 + 15) = 92, then 100 — 92 = &, so I need to add 8, but I have 12 and 4.
12 — 4 = 8, so that could work:

77+ 15+ (12 — 4) = 100

Let’s see: 77 + 15 = 92,92 + 8 = 100, but 12 — 4 = §, so yes! But I need to make
sure the operations are correct. So the equation would be:

TT+15+12 -4 =100

But that would be 77 + 15 = 92, 92 + 12 = 104, 104 — 4 = 100, which is correct.
But I used all numbers: 77, 15, 12, 4. And operations are addition and subtraction.
The problem says “create an equation”, so it should be an expression equal to 100.
So

77+ 15+ 12 — 4 = 100.

But let me confirm: 77 + 15 = 92, 92 + 12 = 104, 104 — 4 = 100. Perfect.

I think this works. But is there another way? Probably, but this seems straightfor-
ward.

The problem says “using the numbers [12,77,4,15]”, and I used each once, with
basic arithmetic.

So I think this is good.

Justification: Correct Answer

18

Under review

On-device LLLM under Task-Tuning Only

System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your
reasoning in <think> </think> tags. And return the final answer in <answer>
</answer> tags at the end.

Response: <think> First, we notice that we have four numbers [12,77,4],
and 15. We need to create an expression using these numbers exactly
once that results in 100. Starting with multiplication: 77 — 15 = 62
62 x 4 = 248, (too high). Next, let’s try another combination of subtractions:
77— 12 =65, 65+ 15 = 80, 80 + 4 = 84(still too low). Now, let’s try yet another
approach: 77 — 15 = 62, 62 4 12 = 74, 74 + 4 = 78(still too low). Another
attempt: 77 + 15 = 92,92 + 12 = 104,104 — 4 = 100. </think> Therefore, the
numerical expression appears to be <answer>(77 4+ 15) + 12 — 4</answer>

Justification: Correct Answer

On-device LLLM under Collaboration-Aware Tuning

System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your rea-
soning in <think> </think> tags. And return the final answer in <answer>
</answer> tags at the end. If you did not find a solution after a thorough
reasoning process, you can ask for external assistance at the end, for example,
<unknown> I need external assistance </unknown>.

Response: <think> First, I will check if any combination of these numbers
directly equals 100. <unknown> I need external assitance</unknown>

Justification: Call for help from the cloud LLM

Under review

On-device LLLM under our methodology

System prompt: You are a helpful assistant. You first think about the reasoning
process in your mind and then provide the user with the answer. Show all your rea-
soning in <think> </think> tags. And return the final answer in <answer>
</answer> tags at the end. If you did not find a solution after a thorough
reasoning process, you can ask for external assistance at the end, for example,
<unknown> I need external assistance </unknown>.

Response: <think> We want to reach 100 using the numbers [12, 77,4, 15] with
each used exactly once. Let’s try starting with multiplication first 12 « 4 = 48.
We’d need the other two numbers to make 52, but 77 — 15 = 62, 77 + 15 = 92,
T7/15 &~ 5.13, 7715 = 1155. None gives 52. Try building from a large difference:
77 — 15 = 62. To reach 100 we’d need 38 from 12 and 4. We have 12 + 4 = 16,
12 —4 = 8,12 x4 = 48, 12/4 = 3. None gives 38. Let’s try another way:
77 + 15 = 92. Now we need 8 from 12 and 4. Since 12 — 4 = 8. We thus have
92 + (12 — 4) = 92 + 8 = 100.</think> Therefore, the final expression is:
<answer>(77 4 15) + (12 — 4)</answer>

Justification: Correct Answer

Takeaway: Unlike the baseline Collaboration-Aware Tuning, our approach enables the on-
device LLM to provide the correct answer independently, thereby fully exploiting its poten-
tial and reducing reliance on the cloud LLM.

20

	Introduction
	Contributions
	Related Works

	Problem Background
	Collaborative Framework for Device-Cloud LLMs
	Limitations

	A Unified Training Framework with Reinforcement Learning
	RL-based formulation
	Prompt and Reward Design
	GRPO Fails to Coordinate On-Device and Cloud LLMs Collaboration
	Proposed Group-Adaptive Policy Gradient Algorithm
	Group-level Policy Gradient
	Group-Adaptive Prompt Filtering

	Experiments
	Countdown Task: Comparison Using Qwen2.5-3B
	Math Task: Comparison across Qwen2.5-1.5B and Llama-3.2 Models

	Conclusion
	Training Objective of GRPO
	Prompt Template and Reward Details
	Proof of Proposition 3.1
	Details on Hyperparameters and Datasets
	Case Study: Comparison of the Responses

