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ABSTRACT

Federated Learning (FL), despite demonstrating impressive capabilities in the
training of multiple models in a decentralized manner, has been shown to pro-
duce a final model not necessarily well-suited to the needs of each client. While
extensive work has been conducted on how to create tailored personalized mod-
els, called Personalized Federated Learning (PFL), less attention has been given
to personalization via fine-tuning of foundation models with multi-task and multi-
modal properties. Moreover, there exists a lack of understanding in the literature
on how to fine-tune and personalize such models in a setting that is heterogeneous
across clients not only in data, but also in tasks and modalities. To address this gap
in the literature, we propose TAP (Two-Stage Adaptive Personalization), which
(i) leverages mismatched model architectures between the clients and server to
selectively conduct replacement operations when it benefits a client’s local tasks
and (ii) engages in post-FL knowledge distillation for capturing beneficial gen-
eral knowledge without compromising personalization. We also introduce the first
convergence analysis of the server model under its modality-task pair architecture,
and demonstrate that as the number of modality-task pairs increases, its ability to
cater to all tasks suffers. Through extensive experiments, we demonstrate the ef-
fectiveness of our proposed algorithm across a variety of datasets and tasks in
comparison to a multitude of baselines. Implementation code is publicly available
at https://github.com/lee3296/TAP.

1 INTRODUCTION

Federated Learning (FL) is a decentralized machine learning paradigm that has garnered significant
attention in recent years due to its ability to collaboratively train a model without the need to share
potentially sensitive data. Through a network of clients, each client hosts its own model, which are
trained locally and transmitted to a central server for aggregation (Konečnỳ et al., 2016; McMahan
et al., 2017). In this vein, recent attention has been given to the question of how to deploy foundation
models in a federated setting, with large language models (LLMs) (Fang et al., 2025; Ye et al., 2024)
being the most popular application.

However, due to the collaborative nature of FL, the final model may not be particularly well-suited
to each local client. To tackle this challenge, personalized FL (PFL) has been explored (Tan et al.,
2022; Deng et al., 2020), seeking to allow the server to train a global collaborative model while
simultaneously allowing each local client to train a model tailored to its own local data.

Challenges: Despite many promising approaches to PFL, a majority of explored applications are
limited to a uni-modal and uni-task scenario, where the clients and server share the same model
architecture, task, and modality. Moreover, the application of fine-tuning larger foundation mod-
els to a PFL setting is an emerging area of research, with a limiting assumption being that while
potentially dealing with multi-modal and/or multi-task models, they still share a unified architec-
ture amongst all clients and the server, enabling easy aggregation protocols. In real-life scenarios,

1

ar
X

iv
:2

50
9.

26
52

4v
1 

 [
cs

.L
G

] 
 3

0 
Se

p 
20

25

https://github.com/lee3296/TAP
https://arxiv.org/abs/2509.26524v1


however, it will often be the case that each client’s modalities and tasks will differ, resulting in
differing model architectures and necessitating a need for the learning process to account for these
differences. Therefore, a crucial question will be how to personalize each client’s local model when
models returned from the server are heterogeneous in both tasks and modalities. While an existing
work in this domain exists via a Mixture of Experts (MoE) based modality and task routing mecha-
nism (Chen & Zhang, 2024), its approach largely relies on the model returned from the server via its
MoE-based architecture, leaving out potential further personalization that could be obtained from
local insights. Moreover, it does not consider how to utilize this architecture for fine-tuning with
already existing pre-trained foundation models.

1.1 CONTRIBUTIONS

Motivated by these challenges and gaps in the literature, we develop a personalized FL methodology
to allow for personalization of foundation models that are heterogeneous in tasks and modalities.
Our methodology allows for the server to still learn a generalizable model capable of handling all
tasks and modalities while the local client’s model is adapted towards its own tasks. The approach
follows a two stage process. Firstly, during FL training, each client will hold a personalized model
in addition to the model transmitted to the server, and will replace a subset of its personalized model
when it receives indication that the returned model from the server would benefit the personal model
on a specific task, permitting each client to effectively pick-and-choose beneficial modality-task
pairings with limited interference among pairs under multi-modal, multi-task conditions. Secondly,
after FL communication ends, we engage in knowledge distillation, as done in many existing PFL
works (Chen et al., 2024; Jiang et al., 2020), by which we utilize the returned model from the
server as a teacher, serving as a means to incorporate potentially unseen and beneficial insights
from the teacher model without affecting personalization. While not tailored for personalization, its
learned representations can still provide generalizable knowledge presented from other modality-
task pairings without engaging in an aggressive operation such as replacement. Therefore, our key
contributions are outlined as follows:

• We propose a two-stage adaptive personalization (TAP) algorithm, which seeks to leverage pa-
rameters engaged in the vanilla FL protocol when beneficial to a client’s local task. Utilizing
client defined margin hyperparameters, each client can effectively engage in replacement when
the model engaged in the FL process offers significant benefit to the personalization process. Af-
terwards, we utilize a knowledge distillation-based post-training process, tuning the personalized
model by distilling knowledge from representations of the FL-engaged model while maintaining
high personalization.

• We provide the first convergence analysis of the server model under its modality-task based archi-
tecture. Although the server model itself is not personalized, this analysis sheds light on how its
convergence degrades with the addition of more modality-task pairs, motivating the necessity for
designing personalized FL methods under this setup.

• We conduct extensive experiments across a wide variety of common datasets encompassing a
diverse array of tasks, demonstrating the superiority of our proposed method in comparison to
a multitude of relevant baselines. In other words, we show that our method is better suited to
personalization when considering the additional complexity of heterogeneity in modalities and
tasks across clients.

2 RELATED WORK

Foundation Models: Foundation Models, as outlined by Bommasani et al. (2021), are models
trained on large amounts of data that can be fine-tuned and adapted to a range of downstream
tasks (Lian et al., 2024). In this regard, a large variety of foundation models have been developed
and considered, such as BERT (Koroteev, 2021), DALL-E (Marcus et al., 2022), and the highly-
popularized GPT family (Achiam et al., 2023). These base models are often considered pre-trained,
and fine-tuning of such models have been shown to offer promise across a variety of applications,
such as medical imaging (Zhang et al., 2025) and sentiment analysis (Zhang et al., 2023).

Personalized Federated Learning (PFL): With Personalized Federated Learning (PFL), the goal
is for clients to train models that are personalized towards their own data while also collaboratively
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training with other clients via the vanilla FL training process. In PFL, personalization usually falls
into two broad categories: (i) personalized fine-tuning via the global model (Kairouz et al., 2021;
Mansour et al., 2020; Fallah et al., 2020) and (ii) training of individual personalized models, sepa-
rated from the typical FL learning process (Tan et al., 2022; Ghuhan et al., 2019). For the second
category, while the personalized model is not presented to the server during training, it is common
to utilize the global model as an informative basis for personalization (Chen et al., 2024). In the vein
of PFL with foundation models, while existing works on dealing with multi-modal (Luo et al., 2025)
and/or multi-task PFL exist (Chen et al., 2024; Long et al., 2024), these works are still limited in
that either their tasks and/or modalities are consistent across all clients and assume a common model
architecture. To deal with this limitation, Chen & Zhang (2024) propose to have separate encoders
and decoders for differing modalities and tasks, with a shared transformer backbone utilizing a Mix-
ture of Experts (MoE) (Yuksel et al., 2012) structure to route inputs based off modality-task pairs.
However, while a disentanglement axillary loss is introduced to potentially create more separable
latent spaces between pairs, this approach can still result in entanglement of local models that share
common subsets of the server model during aggregation.

Parameter Efficient Fine-tuning (PEFT): In fine-tuning of foundation models, considerable at-
tention has been given to methodologies that are efficient in that only a small number of parameters
are updated. These suite of techniques fall into the realm of parameter efficient fine-tuning (PEFT),
and are particularly well-suited for FL scenarios (Wang et al., 2019), due to the limited computa-
tional resources of local clients. Well-known PEFT algorithms include prefix tuning (Li & Liang,
2021), prompt tuning (Lester et al., 2021), and LoRA (Hu et al., 2022), and are often trained on a
small subset of the model parameters, significantly reducing computational resource requirements,
making training on clients feasible. LoRA remains the most popular choice that a majority of works
and frameworks adopt due to its simplicity, updating two low-rank matrices instead of the original
model parameters, which are added on top of the original weight matrices.

Knowledge Distillation (KD): Knowledge distillation (KD) is a suite of techniques designed to dis-
till useful knowledge from one model (known as the teacher) to another (known as the student). The
teacher, which has been trained on data that would be beneficial to whatever task(s) the student seeks
to optimize, allows the student to utilize its logits to try to minimize the KL-divergence (Kullback
& Leibler, 1951) between them (Gou et al., 2021). Existing works have consistently demonstrated
that KD offers significant benefits in quicker and more reliable training in a wide range of tasks,
ranging from classification (Phuong & Lampert, 2019) to image generation (Cui et al., 2023). In the
realm of FL, it has been shown to be a powerful technique in dealing with the issue non-i.i.d. data
distributions between clients (Hsieh et al., 2020; Li et al., 2020; Lee et al., 2024) by engaging in KD
with the server’s logits on a per-label basis (Jeong et al., 2018). Moreover, KD has been shown to
act as an effective regularizer in PFL, whereby the global model’s logits prevent the personalized
model from overfitting on the client’s data (Chen et al., 2024).

3 PROPOSED METHODOLOGY

3.1 PERSONALIZED FEDERATED LEARNING IN MULTI-MASK, MULTI-MODALITY SETUP

We consider a multi-modal and multi-task federated learning setup with K clients in set ci ∈ C and
a server S, with Ct ⊆ C clients selected for aggregation each communication round t. Adopting the
architecture from Chen & Zhang (2024), the server model’s parameter vector W ∈ Rd×1 holds all
modality encoders W(E) ∈ Rd(E)×1 and task decoders W(D) ∈ Rd(D)×1. Therefore, the server
model is designed to handle all modalities and tasks, i.e.,

⋃
ci∈C Mi and

⋃
ci∈C Oi. The transformer

backbone W(R) ∈ Rd(R)×1 sits between the encoders and decoders and consists of two stacks of
layers–the first stack, of which there are |M + 1| of for each modality, is responsible for taking
the outputs of a modality encoder and routing it as input to the proper layers responsible for that
modality. Then, within those layers, the feed forward networks (FFN) are replaced with an MoE,
which will activate the expert specialized for the task that the input data is seeking to solve. Then
it is routed to the second stack of layers, of which there are |O + 1| of, where it selects the layers
responsible for a certain task, utilizing an expert specialized for a certain modality. Then the output
is combined and sent to the appropriate task decoder. There are |M+1| and |O+1| stacks because
each side of the transformer has what are called “shared” layers, which are activated at all times, no
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Figure 1: Architecture of server model W. Each local client ci has a subset of W consisting of
encoders, transformer layers, decoders, and experts relevant to its set of modalities and tasks.

matter the input. The stacks are called the Mixture of Modality Task Expert (MoTE) and Mixture of
Modality Expert (MoME) layers respectively.

Besides the general architecture, the transformer backbone and encoder parameters are pre-trained
and frozen, with it being being fine-tuned with LoRA low-rank matrices A and B. This means
only the decoder is fully trained. Each client ci holds a subset of the server model, consisting
of modality encoders W

(E)
[i] ∈ Rd

(E)
i ×1, task decoders W

(D)
[i] ∈ Rd

(D)
i ×1, transformer backbone

W
(R)
[i] , and LoRA matrices Ai and Bi based off the set of modalities Mi and tasks Oi that client

ci is responsible for. The combined local model is therefore defined as W[i] = W
(E)
[i] ∪ W

(D)
[i] ∪

W
(R)
[i] ∪Ai ∪Bi with a learning rate of ηt. We define the frozen and trainable components of the

model for each client ci as Ŵ[i] = W
(E)
[i] ∪ W

(R)
[i] and W̃[i] = Ai ∪ Bi ∪ W

(D)
[i] respectively.

For the global model, it is Ŵ = W(E) ∪ W(R) and W̃ = A ∪ B ∪ W(D). Fig. 1 presents the
multi-modal, multi-task server model architecture along with the depiction of the LoRA fine-tuned
and fully trained components.

For training, clients will train their local models for τ minibatch iterations, and then broadcast their
parameters to the server for aggregation. When the server transmits parameters back to each client
after aggregation, it will only send the decoders and LoRA parameters that are relevant to each
client based off their tasks and modalities. Utilizing this structure, in traditional federated learning,
the objective is find parameters that minimize the global objective, which can be expressed as

min
W̃

[
f
(
W̃
)
:=

1

|D|

K∑
i=1

|Di| · gi
(
W̃
)]

, (1)

where D and Di ⊆ D denote the full dataset across all clients and a local dataset on client ci
respectively. We say that the server model trainable parameter vector W̃ can be partitioned into
disjoint blocks via B = {B0, . . . ,BR}. Then, for notation purposes, we say there are projection
operators PBr

(linear) that zero out coordinates outside of block Br, so W̃[r] = PBr
W̃ and W̃ =∑R

r=0 W̃[r]. Each client ci owns a subset of blocks Bi ⊆ B, and since the client’s local loss only
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Figure 2: The two-step process of the proposed TAP algorithm. Firstly, during FL training, at each
time step, X[i] will load in parameters from W̃[i] when Ri[o] = 1. After FL, using W̃[i] as a teacher,
X[i] will engage in knowledge distillation (KD).

depends on these blocks, local loss for client ci is gi
(
W̃
)
= fi

(
PBi

W̃
)
= fi

(
W̃[i]

)
. Outside

of these considerations, when dealing with multi-task scenarios, it is also necessary to consider the
loss of multiple differing tasks, resulting in

gi

(
W̃
)
= EHi∼Di

[∑
o∈Oi

λo · ℓi,o
(
Hi,o;W̃[i,o]

)]
, (2)

where ℓi,o, Hi,o ⊆ Hi, and λo denotes the sample loss of ci on task o, a subset of minibatch Hi with
samples pertaining to task o, and the weighting given to the loss of task o respectively. W̃[i,o] =

PBi,oW̃, with Bi,o ⊆ Bi being a subset of Bi pretaining to parts relevant to task o. However, unlike
equation 1, in PFL, the endpoint is for each client to a achieve low local loss, i.e., a low value on
gi(·). Due to heterogeneous model architectures amongst clients in the current setup, aggregation is
performed by utilizing FedAvg (McMahan et al., 2017) on each component individually, combining
common components based off the clients chosen for a specific aggregation round. Therefore, it is
a possibility that the entirety of W̃ is not updated within a single communication round.

3.2 ADAPTIVE REPLACEMENT FOR PERSONALIZATION

Since the goal of each client ci is to maximize personalization of its multi-modal and multi-task
model towards its own local dataset, relying solely on server parameters W̃ is challenging due to
fact that W̃ is seeking to optimize all tasks O, which utilizes all modalities M. Therefore, it is
desirable to limit interaction with W̃[i] (a subset of W̃ for client ci), as optimizing for tasks not
in Oi could interfere with personalization. For this reason, on top of W̃[i], which engages in the
vanilla FL training protocol, we utilize local personalized parameters X[i], which follows the same
architecture as W̃[i], but does not participate in the transmitting and receiving of parameters from
the server, and trains only on the local dataset Di. However, it could still be the case that the returned
server parameters has useful information that could benefit the performance of X[i], especially early
on in the training process, when the most beneficial aspects of a task are learned (Frankle et al.,
2020). Therefore, each client will keep track of two types of values–the average local training
loss of W̃[i] and X[i] for each task that was seen over the course of local training for that round t
(Oseen

t,i ⊆ Oi), which are defined as ℓ(l)i,o and ℓ(p)i,o respectively, where o is a singular task. These values

are used to update client ci’s history values, defined as h(l)i,o and h(p)i,o . Then, client ci will introduce
margin hyperparameters mi,o for each task in Oi, and will set a value to an entry of indicator vector
Ri ∈ R1×|Oi| via

Ri[o] =

{
1 if h

(l)
i,o +mi,o < h

(p)
i,o

0 otherwise.
(3)

5



Intuitively, Ri[o] is an indicator that W̃[i] at timestep t achieves superior performance compared to
X[i] on task o by at least a margin of mi,o, and therefore can offer benefit to X[i]. For this reason,
when Ri[o] = 1, client ci will replace parameters of X[i] responsible for task o with parameters
from W̃[i], conducting the replacement operation (Stage 1 of Fig. 2) via

X[i,o] = (1−Ri[o])X[i,o] +Ri[o]W̃[i,o], (4)

where X[i,o] ⊆ X[i] is the subset of X[i] responsible for task o. In this way, the replacement
operation can selectively extract the desired parameters while minimizing interference from other
modality-task pairings, thereby enabling effective multi-modal and multi-task personalization, with
input from W̃[i] incorporated when needed.

Remark: We note that the replacement process, which occurs in conjunction with the FL training
protocol, does not induce additional communication costs, as the personalized parameters X[i] are
not transmitted to server S. Moreover, X[i] can be trained on ci in parallel while W̃[i] is being
aggregated at S, enabling effective usage of both local and server resources simultaneously without
introducing additional idle time.

3.3 POST-FL KNOWLEDGE DISTILLATION

After FL training has been completed, we engage in knowledge distillation (KD) (Gou et al.,
2021), whereby a teacher model seeks to distill knowledge to a student model via an auxiliary KL-
divergence (Kullback & Leibler, 1951) loss. Firstly, the final parameters W̃[i] that was returned from
the server S will be trained locally for P mini-batch iterations, and will then be used as a teacher
model for X[i], who will then also train for P iterations utilizing KD. The intuition is that W̃[i] now
benefits from both the FL process (which captures generalized knowledge) and some specialization
on local data, free from conflicts introduced by other clients’ distributions. The FL-trained base may
help learn generalizable representations present across all modalities and tasks, and this adaptability
can be effectively distilled into the student model. Overall, the distillation loss can be defined as

Ldistill
i (zteacher

i,o , zstudent
i,o ) =

τ̃2 · KL

 exp
(
zteacher
i,o /τ̃

)
∑|zteacher

i,o |
j=1 exp

(
zteacher
i,o,j /τ̃

)
∥∥∥∥∥∥
zstudent

i,o

τ̃
− log

|zstudent
i,o |∑
k=1

exp
(
zstudent
i,o,k /τ̃

) , (5)

where zteacher
i,o and zstudent

i,o are the output logits of the local and personalized model for task o, with τ̃
as the temperature. Utilizing equation 5, X[i] trains in the post-FL phase (Stage 2 of Fig. 2) via

Lpost
i

(
Hi, z

teacher
i,o , zstudent

i,o

)
=
∑
o∈O′

i

λo · ℓi,o(Hi,o) +
∑
o∈O′

i

βo · Ldistill
i

(
zteacher
i,o , zstudent

i,o

)
, (6)

where βo and O′
i ⊆ Oi is the weight given to the KD loss for task o and the set of tasks present

in minibatch Hi respectively. Pseudocode for the entirety of the TAP algorithm can be found in
Appendix A.

4 CONVERGENCE ANALYSIS

In this following section, we analyze the convergence of the server model under its modality-task
pair architecture. Firstly, the following assumptions common throughout literature (Bottou et al.,
2018; Li et al., 2020; Fang et al., 2022; Lee et al., 2025) are made:

Assumption 1 gi(W̃) is differentiable and L-smooth, i.e., there exists a positive constant L such
that ∥∇gi(W̃1)−∇gi(W̃2)∥ ≤ L∥W̃1 − W̃2∥ for any W̃1 and W̃2.

Assumption 2 The minibatch Hi loss gradient for client ci, denoted as
∇ℓ̃i

(
Hi;W̃[i]

)
=
∑

o∈Oi
λo · ℓi,o

(
Hi,o;W̃[i,o]

)
is an unbiased estimate of ∇gi(W̃), i.e.,
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EHi∼Di

[
ℓ̃i

(
Hi;W̃[i]

)]
= ∇gi(W̃), and with its variance also being uniformly bounded, i.e.,

E
∣∣∣∣∣∣ℓ̃i (Hi;W̃[i]

)
−∇gi(W̃)

∣∣∣∣∣∣2 ≤ σ2.

Assumption 3 For every block Br and parameters W̃, 1
Kr

∑
i:Br∈Bi

∥∇gi(W̃[r])−∇f(W̃[r])∥2 ≤
ζ2r , i.e., the average squared deviation of owners’ gradients in block Br is at most ζ2r , where Kr is
the number of clients having block Br.

Theorem 1 Suppose Assumptions 1-3 hold. Then the iterates generated by component-based Fe-

dAvg with full client participation and learning rate ηt ≤ min
{

1
48Lτ ,

1√
8Lτ

,
(

1
96L3τ3

) 1
3

}
satisfies:

1∑T−1
t=0 ηt

T−1∑
t=0

ηtE∥∇f(W̃t)∥2 ≤
8
(
f(W̃0)− f(W̃T )

)
∑T−1

t=0 ηt
+ 16

(
Z +

R+ 1

3
σ2

)
τ3L2∑T−1
t=0 ηt

T−1∑
t=0

η3t

+ 48Lτ2Z
1∑T−1

t=0 ηt

T−1∑
t=0

η2t + 16Lτσ2CK
1∑T−1

t=0 ηt

T−1∑
t=0

η2t ,

(7)

where W̃0 and W̃T are the global parameters at global timestep 0 and T respectively. τ is the num-
ber of local iterations,R is for indexing over the blocks,Z :=

∑R
r=0 ζ

2
r , andCK :=

∑R
r=0

1
Kr

. With

a diminishing step size of ηt = α
t+1 , α = min

{
1

48Lτ ,
1√
8Lτ

,
(

1
96L3τ3

) 1
3

}
, limT→∞

1∑T−1
t=0 ηt

→ 0,

limT→∞
1∑T−1

t=0 ηt

∑T−1
t=0 η2t → 0, and limT→∞

1∑T−1
t=0 ηt

∑T−1
t=0 η3t → 0. Hence, the RHS of equa-

tion 7 goes to 0 as T increases to infinity. If there are more disjoint blocks in B to consider, and
therefore more modality-task pairs, then we note that the bound increases in the last three terms of
the RHS. This means that if the number of modality-task pairs increases, the ability of the server to
cater well to all clients decreases, which TAP seeks to alleviate through its two-stage personalization
process. Derivation of the theorem can be found in Appendix B.2.

5 EXPERIMENTAL RESULTS

5.1 SETUP

Model Architecture: To evaluate the effectiveness of the proposed setup, we consider a server
model with text and image input modalities, with tasks relating to image generation, text generation,
image classification, and text classification. We evaluate the method on two pre-trained foundation
models dealing with image and text modalities: FLAVA (Singh et al., 2022) and ViLT (Kim et al.,
2021). For FLAVA, the modality encoders are the pre-trained image and text encoders, with ViLT
being the module of linear patch projections and word embeddings respectively. In terms of the
transformer backbone, due to existing work suggesting that the pruning of later layers of a pre-
trained foundation model (Sajjad et al., 2023) can be conducted while maintaining a majority of its
performance, we load only the first two layers of the multi-modal encoder of FLAVA into W(R).
For ViLT, the first eight layers are utilized. Moreover, within the backbone, similar to existing
work (Wu et al., 2022), we load the pre-trained FFN weights at each layer as the frozen pre-trained
weights of the Mixture of Experts (MoE). As outlined in Sec. 3.1, the encoders and transformer
backbone are fine-tuned with LoRA, with specifics outlined in Appendix D.2. For the decoders,
the generation heads are shared for all generation tasks of a particular modality (decoder specifics
outlined in Appendix D.1). In all experiments, the AdamW optimizer is used (Loshchilov & Hutter,
2019).

Datasets: We adopt the usage of eight common datasets for FLAVA and six for ViLT, spread across
30 clients. We utilize tiny-Imagenet (Le & Yang, 2015) and CIFAR-100 (Krizhevsky, 2009) for
image classification, Fashion-MNIST (FMNIST) (Xiao et al., 2017) and Caltech-256 (Griffin et al.,
2007) for image generation reconstruction, AG News for text classification (Zhang et al., 2015),
and Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021a;b) (Professional
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Law, Professional Medicine, and Moral Scenario subsets), the small variant of VQAv2 (Visual Ques-
tion Answering v2) (Goyal et al., 2017), and CommonGen (Lin et al., 2020) for text generation.
For measuring the quality of the generated text, we use commonly utilized metrics of BERTScore
(BS) (Zhang et al., 2020) and METEOR (Banerjee & Lavie, 2005). While FLAVA uses all 8 datasets,
we exclude the usage of tiny-ImageNet and CIFAR-100 for ViLT, as ViLT’s pre-trained model is not
well-suited for such tasks.

Baselines: To benchmark the performance of the TAP algorithm, we compare against the following
baselines: local, FedAvg (McMahan et al., 2017), FedAvg + Post-train, DisentAFL (Chen & Zhang,
2024), and DisentAFL + Post-train. For local, no FL takes place, with each client training its own
model locally without any interaction from the server. With FedAvg, as mentioned in Sec. 3.1,
server S aggregates common parameter components from the subset of clients chosen at round t and
returns the parameters relevant to each client’s modality and tasks back down to all clients ci ∈ C.
DisentAFL (Chen & Zhang, 2024), besides utilizing the model architectures of server S and clients
ci ∈ C as outlined in Fig. 1 and Sec. 3.1, also introduces an auxiliary disentanglement loss to local
training, whereby it attempts to make differing modality-task pairs in the latent space orthogonal to
one another. Lastly, we also incorporate a post-training baseline of FedAvg and DisentAFL (FedAvg
+ Post-train and DisentAFL + Post-train), where W̃[i] is trained for P iterations on local dataset Di

after FL training.

Hardware and Hyperparameters: For all results, experiments were conducted on a server with a
cluster of four NVIDIA A100-40GB GPUs. For the weighting of each task’s loss during a minibatch
iteration, we weight each task’s weight λo based on the number of samples related to task o within
a batch, i.e., |Hi,o|

|Hi| . For other hyperparameters, explicit details are outlined in Appendix D.2.

5.2 RESULTS

Table 1: Performance comparison for ViLT on image datasets.

Model Method FMNIST Caltech-256 Avg. Gen.

MSE (↓) MSE (↓) MSE (↓)

ViLT

Local 0.6267 ± 0.0379 0.6518 ± 0.1302 0.6368
FedAvg (McMahan et al., 2017) 0.6128 ± 0.0822 0.5011 ± 0.1496 0.5681
FedAvg + Post-train 0.5502 ± 0.0454 0.4099 ± 0.1168 0.4941
DisentAFL (Chen & Zhang, 2024) 0.7925 ± 0.0444 0.5137 ± 0.0787 0.6810
DisentAFL + Post-train 0.6333 ± 0.0423 0.4347 ± 0.0651 0.5539
TAP (Ours) 0.5467 ± 0.0409 0.3949 ± 0.1148 0.4860

Table 2: Performance comparison for FLAVA on image datasets.

Model Method Tiny-ImageNet CIFAR-100 FMNIST Caltech-256 Avg. Class. Avg. Gen.

Acc (↑) Acc (↑) MSE (↓) MSE (↓) Acc (↑) MSE (↓)

FLAVA

Local 18.78± 12.50 23.26± 13.13 0.6209± 0.0230 0.6331± 0.0752 21.02 0.6290
FedAvg (McMahan et al., 2017) 33.39± 5.26 46.93± 7.41 0.6292± 0.0304 0.4915± 0.0650 40.16 0.5374
FedAvg + Post-train 42.27± 6.79 53.67± 5.46 0.5651± 0.0064 0.4345± 0.0141 47.97 0.478
DisentAFL (Chen & Zhang, 2024) 36.99± 11.12 0.85± 0.22 0.9036± 0.0179 0.5890± 0.0203 18.92 0.6939
DisentAFL + Post-train 45.53± 8.57 4.15± 0.52 0.7714± 0.0144 0.5496± 0.0253 24.84 0.6235
TAP (Ours) 47.06 ± 6.80 56.26 ± 5.44 0.5572 ± 0.0083 0.4252 ± 0.0258 51.66 0.4692

Table 3: Performance comparison across FLAVA and ViLT on text datasets.

Model Method AG News MMLU VQA CommonGen Avg. Gen.
Acc (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑)

FLAVA

Local 90.26± 0.55 41.63± 1.26 20.89 ± 2.83 47.72± 1.69 10.44± 2.37 30.62± 1.52 13.17± 2.68 39.66 13.62
FedAvg (McMahan et al., 2017) 92.88± 0.22 37.83± 2.25 7.71± 1.76 37.68± 6.88 10.84± 4.33 29.70± 4.05 12.46± 6.72 34.52 10.86
FedAvg + Post-train 92.97 ± 0.26 36.88± 1.97 8.66± 1.24 41.62± 4.56 12.85± 2.87 31.48± 1.84 11.92± 1.68 36.62 11.64
DisentAFL (Chen & Zhang, 2024) 92.76± 0.28 40.10± 0.77 19.54± 0.85 30.77± 0.64 5.46± 0.11 26.67± 0.48 7.60± 0.38 30.99 9.13
DisentAFL + Post-train 92.69± 0.30 40.37± 0.37 20.39± 1.64 34.99± 0.74 7.68± 0.77 27.86± 1.93 8.51± 0.33 33.21 10.56
TAP (Ours) 92.66± 0.34 45.81 ± 4.32 19.80± 3.83 69.38 ± 7.47 47.60 ± 14.92 34.01 ± 2.96 17.17 ± 4.56 50.52 29.87

ViLT

Local 54.98± 15.88 55.03± 1.99 40.59± 2.65 55.68± 4.04 40.90± 11.61 40.79± 1.19 25.63 ± 1.53 49.60 34.73
FedAvg (McMahan et al., 2017) 70.61± 4.00 41.89± 1.45 6.79± 1.40 49.01± 11.17 18.25± 8.81 37.06± 4.53 14.03± 9.69 42.80 14.27
FedAvg + Post-train 77.71 ± 2.35 42.87± 2.53 9.60± 4.64 60.42± 11.15 34.70± 14.45 39.22± 3.43 17.19± 9.56 48.43 22.68
DisentAFL (Chen & Zhang, 2024) 65.50± 9.35 54.83± 1.22 40.25± 1.95 42.01± 0.50 21.72± 0.85 33.37± 0.51 9.69± 0.13 41.12 20.62
DisentAFL + Post-train 74.69± 4.02 55.31± 0.94 40.64± 1.42 48.94± 3.06 31.53± 10.13 34.94± 2.87 11.92± 1.33 44.61 25.51
TAP (Ours) 77.44± 2.63 56.43 ± 3.12 40.79 ± 1.61 72.99 ± 7.47 62.52 ± 9.09 41.46 ± 1.45 25.35± 1.85 57.07 43.31

Performances in Comparison to Baselines: Firstly, we assess the effectiveness of TAP in compar-
ison to the baselines outlined in Sec. 5.1, with results presented in Tables 1 and 2 for image-related
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tasks and Table 3 for text-related tasks. Based off these tables, we firstly note the superiority of
the proposed TAP methodology across a vast majority of the tasks evaluated, with the highest aver-
age accuracy and generation scores for image classification, image generation, and text generation
tasks. We also note for tasks requiring greater intricate knowledge between modalities like VQA,
the proposed TAP algorithm exhibits significant improvement in comparison to the baselines. For
tasks where performance lags behind the baselines, the proposed TAP algorithm still retains high
performance and remains close in performance with the highest performing baseline (e.g., 92.97 vs.
92.66 and 77.71 vs. 77.44 on AG News).

Table 4: Ablation study on the use of knowledge distillation (KD) in the post-training phase on
image datasets for ViLT.

Model Method FMNIST Caltech-256 Avg. Gen.

MSE (↓) MSE (↓) MSE (↓)
ViLT No KD 0.5466 ± 0.0410 0.3940 ± 0.1145 0.4856

KD 0.5467± 0.0409 0.3949± 0.1148 0.4860

Table 5: Ablation study on the use of knowledge distillation (KD) in the post-training phase on
image datasets for FLAVA.

Model Method Tiny-ImageNet CIFAR-100 FMNIST Caltech-256 Avg. Class. Avg. Gen.
Acc (↑) Acc (↑) MSE (↓) MSE (↓) Acc (↑) MSE (↓)

FLAVA No KD 47.06 ± 6.79 56.25± 5.47 0.5570 ± 0.0085 0.4247 ± 0.0260 51.65 0.4688
KD 47.06 ± 6.80 56.26 ± 5.44 0.5572± 0.0083 0.4252± 0.0258 51.66 0.4692

Table 6: Ablation study on the use of knowledge distillation (KD) in the post-training phase on text
datasets.

Model Method AG News MMLU VQA CommonGen Avg. Gen.
Acc (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑)

FLAVA No KD 92.65± 0.34 42.20± 1.32 15.79± 2.27 51.50± 3.30 16.82± 5.93 31.08± 1.31 14.93± 4.13 41.47 15.86
KD 92.66 ± 0.34 45.81 ± 4.32 19.80 ± 3.83 69.38 ± 7.47 47.60 ± 14.92 34.01 ± 2.96 17.17 ± 4.56 50.52 29.87

ViLT No KD 77.47 ± 2.61 55.50± 1.00 40.94 ± 0.75 65.29± 9.50 52.14± 15.28 40.67± 2.07 25.18± 2.57 53.48 39.12
KD 77.44± 2.63 56.43 ± 3.12 40.79± 1.61 72.99 ± 7.47 62.52 ± 9.09 41.46 ± 1.45 25.35 ± 1.85 57.07 43.31

Ablation on KD: In this section, we explore the impact of utilizing knowledge distillation (KD)
from equation 6 in Tables 4, 5, and 6. Firstly, we note that while KD under-performs no distillation
taking place on image-generation tasks, the performance difference is minimal (e.g., 0.3940 vs.
0.3949 on Caltech-256 and 0.5466 vs. 0.5467 on FMNIST for ViLT). Moreover, this difference is
made up for with performance gains across a vast majority of other tasks. In particular, we note that
text generation tasks in Table 6 benefit the most from this process, as seen in VQA, which exhibits
significantly higher BS and METEOR scores ranging from roughly 18 to 30 points of improvement
for FLAVA and approximately 7 to 10 points for ViLT. Overall, we see an average increase of 3.5 to
9 points on BS and 4 to 14 points on METEOR across all text-generation based datasets.

Additional Experiments: Additional experimental results, ranging from further ablation studies on
the margin hyperparameters, comparison of TAP against the baselines trained for 2P iterations, and
the number of replacements over FL training can be found in Appendix C.

6 CONCLUSION

We introduced TAP, a novel two-step adaptive Personalized Federated Learning (PFL) algorithm that
enables personalization of heterogeneous multi-modal and multi-task foundation models. Despite
this additional complexity, TAP is capable of leveraging beneficial knowledge from the collaborative
server model while maintaining high levels of personalization across clients. We provide compre-
hensive convergence analysis to motivate the insufficiency of the server model to cater to the needs
of all clients, necessitating the need for PFL methods such as TAP. Through margin hyperparame-
ters in the FL training period and a knowledge distillation (KD) based post-FL training period, we
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demonstrate that TAP enables superior personalization capabilities across a multitude of datasets,
tasks, and model architectures.

REPRODUCIBILITY STATEMENT

The manuscript provides the necessary information needed to reproduce the results, with general
information found in Sec. 5.1 with specifics on hyperparameters, model architectures, and text tem-
plates found in Appendix D.1, D.2, and D.3. We also provide detailed pseudocode of the algorithm
in Appendix A. Link to the implementation code can be found in the abstract.

LLM USAGE

We employed the GPT-5 version of ChatGPT to assist with improving the wording, rephrasing, and
overall readability of the manuscript. In addition, it was used as an aid in the creation of tables
throughout the manuscript. All algorithm development and experimental work were carried out
solely by the authors.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on In-
trinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp.
65–72, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W05-0909.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.
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Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Mikhail V Koroteev. Bert: a review of applications in natural language processing and understand-
ing. arXiv preprint arXiv:2103.11943, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

11



Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Seohyun Lee, Anindya Bijoy Das, Satyavrat Wagle, and Christopher G Brinton. Smart information
exchange for unsupervised federated learning via reinforcement learning. In ICC 2024-IEEE
International Conference on Communications, pp. 3494–3499. IEEE, 2024.

Seohyun Lee, Wenzhi Fang, Anindya Bijoy Das, Seyyedali Hosseinalipour, David J Love, and
Christopher G Brinton. Cooperative decentralized backdoor attacks on vertical federated learning.
arXiv preprint arXiv:2501.09320, 2025.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. Emperical Methods in Natural Language Processing (EMNLP), 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Chenyu Lian, Hong-Yu Zhou, Yizhou Yu, and Liansheng Wang. Less could be better:
Parameter-efficient fine-tuning advances medical vision foundation models. arXiv preprint
arXiv:2401.12215, 2024.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi,
and Xiang Ren. CommonGen: A constrained text generation challenge for generative com-
monsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 1823–1840, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.165. URL https://www.aclweb.org/anthology/
2020.findings-emnlp.165.

Guodong Long, Tao Shen, Jing Jiang, Michael Blumenstein, et al. Dual-personalizing adapter for
federated foundation models. Advances in Neural Information Processing Systems (NeurIPS), 37:
39409–39433, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations (ICLR), 2019.

Jun Luo, Chen Chen, and Shandong Wu. Mixture of experts made personalized: Federated prompt
learning for vision-language models. International Conference on Learning Representations
(ICLR), 2025.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. arXiv
preprint arXiv:2204.13807, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In Interna-
tional Conference on Machine Learning (ICML), pp. 5142–5151. PMLR, 2019.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Mar-
cus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR),
pp. 15638–15650, 2022.

12

https://www.aclweb.org/anthology/2020.findings-emnlp.165
https://www.aclweb.org/anthology/2020.findings-emnlp.165


Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE transactions on neural networks and learning systems, 34(12):9587–9603, 2022.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive federated learning in resource constrained edge computing systems. IEEE
journal on selected areas in communications, 37(6):1205–1221, 2019.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, and Lu Yuan. Residual
mixture of experts. arXiv preprint arXiv:2204.09636, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: A novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via
federated learning. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery
and data mining, pp. 6137–6147, 2024.

Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of experts. IEEE
transactions on neural networks and learning systems, 23(8):1177–1193, 2012.

Boyu Zhang, Hongyang Yang, and Xiao-Yang Liu. Instruct-fingpt: Financial sentiment analysis by
instruction tuning of general-purpose large language models. International Joint Conference on
Artificial Intelligence (IJCAI), 2023.

Dan Zhang, Tao Feng, Lilong Xue, Yuandong Wang, Yuxiao Dong, and Jie Tang. Parameter-efficient
fine-tuning for foundation models. arXiv preprint arXiv:2501.13787, 2025.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Eval-
uating text generation with bert. International Conference on Learning Representations (ICLR),
2020.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems (NeurIPS), 28, 2015.

13



A PSEUDOCODE FOR TAP

Here, we give a detailed step-by-step pseudocode for the TAP algorithm. The for-loop encompassing
global rounds 0 to T − 1 entails the FL training protocol and the replacement stage of the algorithm
(Sec. 3.2). The last three lines of the algorithm delineate the knowledge-distillation (KD) process
after FL communication ends (Sec. 3.3).

Algorithm 1: TAP Training Algorithm

Input: Clients ci ∈ C; Server S; datasets Di ⊆ D; trainable parameters of local models W̃[i];
personalized parameters X[i]; history values h(l)i,o and h(p)i,o

for t = 0 to T − 1 do
Sample subset of clients ci ∈ Ct
for client ci ∈ Ct do in parallel

Train W̃[i] on Di with learning rate ηt
for seen task o ∈ Oseen

t,i do
Update W̃[i]’s history value: h(l)i,o = ℓ

(l)
i,o

Transmit W̃[i] from client ci to server S for aggregation.
for task o ∈ Oseen

t,i do
Set Ri[o] to 0 or 1 based on equation 3
Replacement on X[i,o] ⊆ X[i] for task o via equation 4.

Reset all entries of Ri to 0.
Train X[i] on Di with learning rate ηt
for seen task o ∈ Oseen

t,i do
Update X[i]’s history value: h(p)i,o = ℓ

(p)
i,o

Server S broadcasts W̃[i] to all clients ci ∈ C
for client ci ∈ C do

Train W̃[i] for P minibatch iterations on Di

Train X[i] for P minibatch iterations on Di utilizing loss from equation 6.

B ANALYSIS

B.1 LEMMAS

As a preliminary, we introduce some basic lemmas, which will be utilized in the derivation of the
theorem.

Lemma 1 If vectors v1, . . . , vn are such that vn only has non-zero values on a unique block of
coordinates (e.g. v1 only has non-zero for block 1, v2 for block 2, as so on), then

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

vn

∣∣∣∣∣
∣∣∣∣∣
2

=

N∑
n=1

∥vn∥2.

Lemma 2 Given any vectors v1, . . . , vn, the following is true:

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

vn

∣∣∣∣∣
∣∣∣∣∣
2

≤ N

N∑
n=1

∥vn∥2.

B.1.1 PROOF OF LEMMA 1

Given vectors v1, . . . , vn, we have
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∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

vn

∣∣∣∣∣
∣∣∣∣∣
2

= ⟨
N∑

n=1

vn,

N∑
n′=1

vn′⟩ =
N∑

n=1

N∑
n′=1

⟨vn, vn′⟩.

Due to orthogonality, ⟨vn, vn′⟩ = 0 for n ̸= n′, and with n = n′ being ∥vn∥2, we have

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

vn

∣∣∣∣∣
∣∣∣∣∣
2

=

N∑
n=1

∥vn∥2,

which completes the proof.

B.1.2 PROOF OF LEMMA 2

Given vectors v1, . . . , vn, we have

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

vn

∣∣∣∣∣
∣∣∣∣∣
2

= ⟨
N∑

n=1

vn,

N∑
n′=1

vn′⟩ =
N∑

n=1

N∑
n′=1

⟨vn, vn′⟩,

which can be decomposed and expressed via the following:

N∑
n=1

∥vn∥2 + 2
∑

1≤n<n′≤N

⟨vn, vn′⟩.

Then, by Cauchy-Schwartz, where ⟨vn, vn′⟩ ≤ ∥vn∥∥vn′∥, n ̸= n′, we have
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where the RHS is equivalent to
(∑N

n=1 ∥vn∥
)2

. Then by using Cauchy-Schwartz again, we obtain
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N∑

n=1

12

)(
N∑

n=1

∥vn∥2
)
,

which gives ∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

vn

∣∣∣∣∣
∣∣∣∣∣
2

≤ N

(
N∑

n=1

∥vn∥2
)
.

B.2 PROOF OF THEOREM 1

Firstly, from Assumption 1, we have:

f(W̃t+1) ≤ f(W̃t) + ⟨∇f(W̃t),W̃t+1 − W̃t⟩+
L

2
∥W̃t+1 − W̃t∥2. (8)

Then, decompose the update by blocks and take expectation over round-t randomness:

E
[
f(W̃t+1)

]
≤ f(W̃t) +

R∑
r=0

E⟨∇f(W̃t,[r]),∆t,[r]⟩+
L

2
E

∣∣∣∣∣
∣∣∣∣∣

R∑
r=0

∆t,[r]

∣∣∣∣∣
∣∣∣∣∣
2

, (9)

where ∆t,[r] = − ηt

Kr

∑
i:Br∈Bi

∑τ−1
s=0 ∇ℓ̃

(
Hi;PBrW̃

(s)
t,[i]

)
, with τ as the number of lo-

cal training iterations. Therefore, W̃t+1 = W̃t +
∑R

r=0 ∆t,[r]. Then, by Assumption
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2, E⟨∇f(W̃t,[r]),∆t,[r]⟩ = −ηt
∑τ−1

s=0 E⟨∇f(W̃t,[r]),
1
Kr

∑
i:Br∈Bi

∇gi(W̃(s)
t,[r])⟩. Next, with

−⟨a, b⟩ = 1
2∥a−b∥

2− 1
2∥a∥

2− 1
2∥b∥

2, where a = ∇f(W̃t,[r]) and b = 1
Kr

∑
i:Br∈Bi

∇gi(W̃(s)
t,[r]),

we can write the second term on the RHS as

E
[
f(W̃t+1)

]
≤f(W̃t) +

R∑
r=0

ηt
2

τ−1∑
s=0

E

∣∣∣∣∣
∣∣∣∣∣∇f(W̃t,[r])−

1

Kr

∑
i:Br∈Bi

∇gi(W̃(s)
t,[r])

∣∣∣∣∣
∣∣∣∣∣
2

−
R∑

r=0

ηtτ

2
∥f(W̃t,[r])∥2 −

R∑
r=0

ηt
2

τ−1∑
s=0

E

∣∣∣∣∣
∣∣∣∣∣ 1

Kr

∑
i:Br∈Bi

∇gi(W̃(s)
t,[r])

∣∣∣∣∣
∣∣∣∣∣
2

+
L

2
E

∣∣∣∣∣
∣∣∣∣∣

R∑
r=0

∆t,[r]

∣∣∣∣∣
∣∣∣∣∣
2

. (10)

Then, discard the second to last term on the RHS. For the second term of the RHS, using the fact
∇f(W̃[r]) =

1
Kr

∑
i:Br∈Bi

∇gi(W̃[r]), Jensen’s inequality, and Assumption 1, we derive

E
[
f(W̃t+1)

]
≤ f(W̃t)−

ηtτ

2

R∑
r=0

∥∇f(W̃t,[r])∥2 +
ηtL

2

2

R∑
r=0

τ−1∑
s=0

ψ
(s)
t,r +

L

2
E

∣∣∣∣∣
∣∣∣∣∣

R∑
r=0

∆t,[r]

∣∣∣∣∣
∣∣∣∣∣
2

,

(11)

with ψ(s)
t,r := 1

Kr

∑
i:Br∈Bi

E∥W̃(s)
t,[i] − W̃t,[r]∥2. Then for the last term of the RHS, using the

property of ∥u+ v∥2 ≤ 2∥u∥2 + 2∥v∥2 from Lemma 2, we can obtain

E
[
f(W̃t+1)

]
≤ f(W̃t)−

ηtτ

2

R∑
r=0

∥∇f(W̃t,[r])∥2 +
ηtL

2

2

R∑
r=0

τ−1∑
s=0

ψ
(s)
t,r

+ L

R=0∑
r=0

η2t
K2

r

2E

∣∣∣∣∣
∣∣∣∣∣ ∑
i:Br∈Bi

τ−1∑
s=0

(
∇ℓ̃(·)−∇gi(W̃(s)

t )
)∣∣∣∣∣
∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
∣∣∣∣∣ ∑
i:Br∈Bi

τ−1∑
s=0

∇gi(W̃(s)
t )

∣∣∣∣∣
∣∣∣∣∣
2
 ,

(12)

where we abbreviate ∇ℓ̃(·) = ∇ℓ̃
(
Hi;PBr

W̃
(s)
t,[i]

)
. This can be further simplified with the variance

term by Assumption 2 via

E
[
f(W̃t+1)

]
≤f(W̃t)−

ηtτ

2

R∑
r=0

∥∇f(W̃t,[r])∥2 +
ηtL

2

2

R∑
r=0

τ−1∑
s=0

ψ
(s)
t,r

+ L

R=0∑
r=0

η2t
K2

r

2Krτσ
2 + 2E

∣∣∣∣∣
∣∣∣∣∣ ∑
i:Br∈Bi

τ−1∑
s=0

∇gi(W̃(s)
t )

∣∣∣∣∣
∣∣∣∣∣
2
 . (13)

Moreover, via Lemma 2, we can further say

E
[
f(W̃t+1)

]
≤f(W̃t)−

ηtτ

2

R∑
r=0

∥∇f(W̃t,[r])∥2 +
ηtL

2

2

R∑
r=0

τ−1∑
s=0

ψ
(s)
t,r

+ L

R=0∑
r=0

η2t
K2

r

(
2Krτσ

2 + 2Krτ
∑

i:Br∈Bi

τ−1∑
s=0

E∥∇gi(W̃(s)
t )∥2

)
(14)
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E
[
f(W̃t+1)

]
≤f(W̃t)−

ηtτ

2

R∑
r=0

∥∇f(W̃t,[r])∥2 +
ηtL

2

2

R∑
r=0

τ−1∑
s=0

ψ
(s)
t,r

+ L

R=0∑
r=0

η2t
Kr

(
2τσ2 + 2τ

∑
i:Br∈Bi

τ−1∑
s=0

E∥∇gi(W̃(s)
t )∥2

)
. (15)

For the last term of the RHS, split the parentheses into

2Lη2t τ

R∑
r=0

σ2

Kr
+ 2Lη2t τ

R∑
r=0

τ−1∑
s=0

(
1

Kr

∑
i:Br∈Bi

E∥∇gi(W̃(s)
t )∥2

)
,

and then decompose

∇gi(W̃(s)
t ) = ∇f(W̃t,[r])︸ ︷︷ ︸

u

+
(
∇gi(W̃t,[r])−∇f(W̃t,[r])

)︸ ︷︷ ︸
v

+
(
∇gi(W̃(s)

t )−∇gi(W̃t,[r])
)︸ ︷︷ ︸

w

.

Next, using ∥u+v+w∥2 ≤ 3(∥u∥2+∥v∥2+∥w∥2) from Lemma 2 in conjunction with Assumptions
1 and 3, we have

1

Kr

∑
i:Br∈Bi

E∥∇gi(W̃(s)
t )∥2 ≤ 3∥∇f(W̃t,[r])∥2 + 3ζ2r + 3L2ψ

(s)
t,r .

Then, summing over s = 0, . . . , τ − 1, we get

τ−1∑
s=0

1

Kr

∑
i:Br∈Bi

E∥∇gi(W̃(s)
t )∥2 ≤ τ(3∥∇f(W̃t,[r])∥2 + 3ζ2r ) + 3L2

τ−1∑
s=0

ψ
(s)
t,r .

Now plug the above back into equation 15 and use Lemma 1 to get

E
[
f(W̃t+1)

]
≤f(W̃t)−

(ηtτ
2

− 6Lη2t τ
2
)
∥∇f(W̃t)∥2 +

(
ηtL

2

2
+ 6L3η2t τ

) R∑
r=0

τ−1∑
s=0

ψ
(s)
t,r

+ 6Lη2t τ
2

R∑
r=0

ζ2r + 2Lη2t τ

R∑
r=0

σ2

Kr
. (16)

Then, for bounding the summations with ψ
(s)
t,r , firstly note the fact that W̃

(s+1)
t,[i] − W̃t,[r] =

W̃
(s)
t,[i] − W̃t,[r] − ηt

(
∇gi(W̃(s)

t ) + ξ
(s)
t,i

)
, where ξ

(s)
t,i := ∇ℓ̃(·) − ∇gi(W̃(s)

t ), with zero mean

and E∥ξ(s)t,i ∥2 ≤ σ2. Therefore,

E∥W̃(s)
t,[i] − W̃t,[r]∥2 ≤E∥

s−1∑
h=0

−ηt(∇gi(W̃(h)
t ) + ξ

(h)
t,i )∥

2

≤s
s−1∑
h=0

η2tE∥∇gi(W̃
(h)
t ) + ξ

(h)
t,i ∥

2

≤η2t s
s−1∑
h=0

E∥∇gi(W̃(h)
t )∥2 + η2t s

s−1∑
h=0

E∥ξ(h)t,i ∥
2.

(17)

Averaging over clients and recalling the definition of ψ(s)
t,r , we can derive
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ψ
(s)
t,r ≤ η2t s

s−1∑
h=0

(
1

Kr

∑
i:Br∈Bi

E∥∇gi(W̃(h)
t )∥2

)
+ η2t s

s−1∑
h=0

(
1

Kr

∑
i:Br∈Bi

E∥ξ(h)t,i ∥
2

)

ψ
(s)
t,r ≤ η2t s

s−1∑
h=0

(
3∥∇f(W̃t,[r])∥2 + 3ζ2r + 3L2ψ

(h)
t,r

)
+ η2t s

2σ2.

Summing them from s = 0 to τ − 1 gives rise to

Ψt,r ≤ 3η2t

τ−1∑
s=0

s

s−1∑
h=0

∥∇f(W̃t,[r])∥2 + 3η2t

τ−1∑
s=0

s

s−1∑
h=0

ζ2r + 3L2η2t

τ−1∑
s=0

s

s−1∑
h=0

ψ
(h)
t,r +

1

3
η2t τ

3σ2,

where we used the fact that
∑τ−1

s=0 s
2 ≤ 1

3H
3. We can further simplify it as

Ψt,r ≤η2t τ3∥∇f(W̃t,[r])∥2 + 2η2t τ
2L2

τ−1∑
s=0

ψ
(s)
t,r + η2t τ

3ζ2r +
1

3
η2t τ

3σ2

≤η2t τ3∥∇f(W̃t,[r])∥2 + 2η2t τ
2L2Ψt,r + η2t τ

3ζ2r +
1

3
η2t τ

3σ2.

(18)

Reorganizing it gives rise to

(1− 2η2t τ
2L2)Ψt,r ≤ η2t τ

3∥∇f(W̃t,[r])∥2 + η2t τ
3ζ2r +

1

3
η2t τ

3σ2.

Then, setting ηt ≤ 1
2Lτ such that 1 − 2L2η2t τ

2 ≥ 1
2 , we have Ψt,r ≤

2η2t τ
3
(
∥∇f(W̃t,[r])∥2 + ζ2r + 1

3σ
2
)

. Summing over r and utilizing Lemma 1, we derive

R∑
r=0

Ψt,r ≤ 2η2t τ
3

(
∥∇f(W̃t)∥2 +

R∑
r=0

ζ2r +
R+ 1

3
σ2

)
,

which when plugged back into equation 16 gives rise to

E
[
f(W̃t+1)

]
≤f(W̃t)−

(ηtτ
2

− 6Lη2t τ
2
)
∥∇f(W̃t)∥2

+ 2η2t τ
3

(
ηtL

2

2
+ 6L3η2t τ

)(
∥∇f(W̃t)∥2 + Z +

R+ 1

3
σ2

)
+ 6Lη2t τ

2Z + 2Lη2t τσ
2CK , (19)

where Z :=
∑R

r=0 ζ
2
r and CK :=

∑R
r=0

1
Kr

. Then group the terms in ∥∇f(W̃t)∥2

to get ητ
(
1
2 − 6Lηtτ − L2η2t τ

2 − 12L3η3t τ
3
)
. Next, by setting the learning rate as ηt ≤

min
{

1
48Lτ ,

1√
8Lτ

,
(

1
96L3τ3

) 1
3

}
, we give rise to

ηt
8
∥∇f(W̃t)∥2 ≤f(W̃t)− E

[
f(W̃t+1)

]
+ 2η2t τ

3

(
ηtL

2

2
+ 6L3η2t τ

)(
Z +

R+ 1

3
σ2

)
+ 6Lη2t τ

2Z + 2Lη2t τσ
2CK . (20)

Moreover, enforcing 6L3η2t τ ≤ ηtL
2

2 (when ηt ≤ 1
12Lτ , which is weaker than ηt ≤ 1

48Lτ ), we can
further derive
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ηt
8
∥∇f(W̃t)∥2 ≤f(W̃t)− E

[
f(W̃t+1)

]
+ 2η2t τ

3
(
ηtL

2
)(

Z +
R+ 1

3
σ2

)
+ 6Lη2t τ

2Z + 2Lη2t τσ
2CK . (21)

Now summing from t = 0 to T − 1, we obtain

1∑T−1
t=0 ηt

T−1∑
t=0

ηtE∥∇f(W̃t)∥2 ≤
8
(
f(W̃0)− f(W̃T )

)
∑T−1

t=0 ηt
+ 16

(
Z +

R+ 1

3
σ2

)
τ3L2∑T−1
t=0 ηt

T−1∑
t=0

η3t

+ 48Lτ2Z
1∑T−1

t=0 ηt

T−1∑
t=0

η2t + 16Lτσ2CK
1∑T−1

t=0 ηt

T−1∑
t=0

η2t ,

(22)

which completes the proof.

C ADDITIONAL EXPERIMENTS

C.1 POST-FL TRAINING FOR 2 · P ITERATIONS VS. TAP

Since the proposed TAP algorithm relies on W̃T,[i] training for P mini-batch iterations after FL
before also training XT,[i] for P iterations with W̃T,[i] as the teacher model, we seek to see if XT,[i]

trained via the KD-based post-FL process still achieves better performance than W̃T,[i] being trained
for 2 · P iterations.

Table 7: TAP vs. DisentAFL and FedAvg trained for 2P iterations on image tasks for ViLT.

Model Method FMNIST Caltech-256 Avg. Gen.

MSE (↓) MSE (↓) MSE (↓)

ViLT
FedAvg + 2 · P 0.5419 ± 0.0450 0.3971± 0.1172 0.4840
DisentAFL + 2 · P 0.5952± 0.0032 0.4061± 0.0048 0.5196
TAP (Ours) 0.5467± 0.0409 0.3949 ± 0.1148 0.4860

Table 8: TAP vs. DisentAFL and FedAvg trained for 2P iterations on image tasks for FLAVA.

Model Method Tiny-ImageNet CIFAR-100 FMNIST Caltech-256 Avg. Class. Avg. Gen.
Acc (↑) Acc (↑) MSE (↓) MSE (↓) Acc (↑) MSE (↓)

FLAVA
FedAvg + 2 · P 44.92± 7.11 55.35± 5.40 0.5595± 0.0059 0.4244 ± 0.0140 50.13 0.4694
DisentAFL + 2 · P 36.08± 0.14 8.45± 0.65 0.7247± 0.0010 0.5075± 0.0054 22.26 0.5799
TAP (Ours) 47.06 ± 6.80 56.26 ± 5.44 0.5572 ± 0.0083 0.4252± 0.0258 51.66 0.4692

Table 9: TAP vs. DisentAFL and FedAvg trained for 2P iterations on text tasks.

Model Method AG News MMLU VQA CommonGen Avg. Gen.
Acc (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑)

FLAVA
FedAvg + 2 · P 92.99 ± 0.22 38.35± 1.26 10.57± 1.24 54.03± 12.31 37.80± 19.76 32.06± 1.91 13.62± 3.17 42.11 22.68
DisentAFL + 2 · P 92.63± 0.09 39.90± 0.65 21.23 ± 0.97 38.94± 0.33 23.07± 1.08 31.01± 0.24 14.30± 0.09 35.96 19.19
TAP (Ours) 92.66± 0.34 45.81 ± 4.32 19.80± 3.83 69.38 ± 7.47 47.60 ± 14.92 34.01 ± 2.96 17.17 ± 4.56 50.52 29.87

ViLT
FedAvg + 2 · P 78.07 ± 2.29 44.47± 3.09 11.94± 5.21 62.58± 13.70 43.61± 21.68 39.65± 3.06 18.73± 7.60 49.78 27.33
DisentAFL + 2 · P 76.54± 0.52 54.91± 0.35 40.26± 0.31 56.99± 0.68 56.65± 0.18 39.23± 0.71 24.68± 0.85 49.47 40.58
TAP (Ours) 77.44± 2.63 56.43 ± 3.12 40.79 ± 1.61 72.99 ± 7.47 62.52 ± 9.09 41.46 ± 1.45 25.35 ± 1.85 57.07 43.31

Based off the results of Tables 7, 8, and 9, we see that across a majority of tasks, TAP still outper-
forms both FedAvg + 2 · P and DisentAFL + 2 · P . In addition, we see that when either FedAvg
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+ 2 · P or DisentAFL + 2 · P is better in performance, TAP remains close to the best performing
baseline, as seen with 0.4252 (TAP) vs. 0.4244 (FedAvg + 2 · P ) for Caltech-256 on FLAVA and
0.5467 (TAP) vs. 0.5419 (FedAvg + 2 · P ) for FMNIST on ViLT. This demonstrates that the final
personalized model produced by TAP induces greater levels of personalization in comparison to
merely devoting more iterations to W̃T,[i].

C.2 ABLATION ON MARGIN HYPERPARAMETERS

Table 10: Ablation study on margin hyperparameters mi,o for image datasets on ViLT.

Model Margin FMNIST Caltech-256 Avg. Gen.

MSE (↓) MSE (↓) MSE (↓)

ViLT
0.01 / 0.04 0.5460± 0.0413 0.3948± 0.1158 0.4855
0.02 / 0.05 0.5582± 0.0436 0.4035± 0.1158 0.4963
0.05 / 0.1 0.5807± 0.0338 0.4281± 0.1198 0.5197

Table 11: Ablation study on margin hyperparameters mi,o for image datasets on FLAVA.

Model Margin Tiny-ImageNet CIFAR-100 FMNIST Caltech-256 Avg. Class. Avg. Gen.
Acc (↑) Acc (↑) MSE (↓) MSE (↓) Acc (↑) MSE (↓)

FLAVA
0.01 / 0.04 46.82± 6.83 55.46± 5.67 0.5587± 0.0102 0.4285± 0.0296 51.14 0.4719
0.02 / 0.05 46.80± 6.80 55.34± 5.63 0.5636± 0.0078 0.4306± 0.0324 51.07 0.4749
0.05 / 0.1 46.30± 7.01 54.74± 6.34 0.5788± 0.0191 0.4713± 0.6555 50.52 0.5071

Table 12: Ablation study on margin hyperparameters mi,o for text datasets.

Model Margin AG News MMLU VQA CommonGen Avg. Gen.
Acc (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑) BS (↑) METEOR (↑)

FLAVA
0.01 / 0.04 92.58± 0.37 45.81± 4.32 19.80± 3.83 69.38± 7.47 47.60± 14.92 34.98± 2.88 17.28± 4.60 50.91 29.91
0.02 / 0.05 92.46± 0.36 45.81± 4.32 19.80± 3.83 69.38± 7.47 47.60± 14.92 35.98± 3.26 17.53± 4.50 51.31 30.01
0.05 / 0.1 92.03± 0.34 45.81± 4.32 19.80± 3.83 69.38± 7.47 47.60± 14.92 37.11± 2.28 18.17± 4.69 51.76 30.27

ViLT
0.01 / 0.04 77.44± 2.63 56.43± 3.12 40.79± 1.61 72.99± 7.47 62.52± 9.09 41.72± 1.43 25.47± 1.88 57.17 43.46
0.02 / 0.05 77.68± 2.43 56.43± 3.12 40.79± 1.61 72.99± 7.47 62.52± 9.09 41.68± 1.05 25.77± 1.30 57.15 43.47
0.05 / 0.1 77.31± 2.22 56.43± 3.12 40.79± 1.61 72.99± 7.47 62.52± 9.09 41.83± 0.91 25.71± 1.59 57.22 43.45

Next, we consider an ablation study on how the margin hyperparameters mi,o influences the perfor-
mance of TAP. Similar to the style outlined in Table 17, we consider two differing margin values
for each setting depending on the task. For each column, the lower margin value (e.g., 0.01 in the
0.01 / 0.04 column) apply to tasks pertaining to image generation and task classification. The higher
margin value is used for all other tasks. Results are given in Tables 10, 11, and 12.

Based off the results outlined in Tables 10 and 11, we see that image-aligned tasks benefit from
having lower mi,o values. For example, the average classification and generation performance for
mi,o = 0.01 or 0.04 is 51.14 and 0.4719 while it is 50.52 and 0.5071 when mi,o = 0.05 or 0.1
on FLAVA. We also note similar characteristics for image-related tasks on ViLT. This means for
image-aligned tasks, being more restrictive and setting higher margin values could inhibit X[i] from
regularly taking advantage of the parameters of W̃[i].

In Table 12, which deals with text-aligned tasks, we note that VQA and MMLU maintains identical
performance across all margins. In terms of other tasks, we note minimal changes in performance
between differing explored margin values. Overall, this indicates that for text-aligned tasks, the TAP
algorithm is not overly sensitive to the values set for mi,o.

C.3 NUMBER OF REPLACEMENTS

In Fig. 3, we present the number of cumulative replacements taken place over FL training for each
task. We note that for a majority of the tasks, most of the replacements take place in the earlier stages
of training and then indicate a trend toward leveling off, signifying that reliance on the FL-trained
model is most beneficial when the models are still focusing on the basic structure and characteristics
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Figure 3: Number of replacements over FL training on FLAVA and ViLT models.
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(a) Number of replacements for differing margin settings on FLAVA.
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(b) Number of replacements for differing margin settings on ViLT.

Figure 4: Replacement comparisons for differing margins on each task across FLAVA and ViLT.

of the tasks (Frankle et al., 2020). Afterwards, the personalized models rely less on the model
returned from the server, allowing them to better adjust to their local datasets. We note that for AG
News, as outlined in Table 3, slightly under performs the baselines, which means more replacements
take place in comparison with other tasks. This indicates that the TAP algorithm’s margin-based
method of replacement is an effective means of identifying when replacement is useful, as the W̃[i]

model for the AG News task regularly exhibits beneficial information for X[i].

Moreover, we also consider how replacements are affected by the differing margin values explored
in Appendix C.2. Based on the results from Fig. 4a (FLAVA) and Fig. 4b (ViLT), we note that when
we make the threshold for replacement higher, i.e., larger mi,o values, the number of cumulative
replacements generally decreases and levels off quicker in comparison to smaller mi,o margins. For
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example, with AG News, we see for margin values of either 0.01 or 0.04, a linear-like increase
of cumulative replacements takes place; with mi,o as either 0.05 or 0.1, we observe lower total
replacements (∼ 50 vs. ∼ 18 replacements on FLAVA and ∼ 50 vs. ∼ 30 replacements on ViLT)
and a noticeable leveling off around communication round 100. With VQA and MMLU, we note
that the number of replacements remains unchanged across all settings, which corroborates with the
results from Appendix C.2, where the BS and METEOR scores remain unchanged across differing
margins. Overall, these outcomes indicate that in general, the margin hyperparameters play an
important role in shaping X[i]’s interaction with FL-engaged W̃[i].

D IMPLEMENTATION SPECIFICS

D.1 DECODER ARCHITECTURE

Here, we outline the architectures utilized for the decoders W(D) on differing tasks for both FLAVA
and ViLT, presented in Tables 13 (classification heads), 14 (image generation head), and 15 (text
generation head).

Table 13: Settings of MLP-type classification heads (both text and image).

Type FLAVA (Singh et al., 2022) ViLT (Kim et al., 2021)

Num. of Linear Layers 2 3
Activation Func. ReLU GELU
Hidden Dimension embed dim / 2 [embed dim * 4, embed dim]
Dropout 0.3 0.1
LayerNorm Utilized No Yes

Table 14: Architecture of the image generation head used in both FLAVA and ViLT.

Component Specification
Head Type Transposed Convolutional Decoder
Input Embedding Dimension 768
Target Image Size 64×64
Output Channels 3 (RGB)

Initial Projection
Layer Type Linear
Output Dimensions 64 × 8 × 8

Decoder Layers
Layer 1: ConvTranspose2d

Input/Output Channels 64 → 32
Kernel/Stride/Padding 4/2/1
Output Resolution 16×16

Activation ReLU
Layer 2: ConvTranspose2d

Input/Output Channels 32 → 16
Kernel/Stride/Padding 4/2/1
Output Resolution 32×32

Activation ReLU
Layer 3: ConvTranspose2d

Input/Output Channels 16 → 3
Kernel/Stride/Padding 4/2/1
Output Resolution 64×64
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Table 15: Architecture of the text generation head for both FLAVA and ViLT.

Component Specification
Head Type Conditional Autoregressive (GPT-2 based)

Conditioning Mechanism
Layer Type Multi-Head Attention
# of Attention Heads 8
Embedding Dimension 768

Core Generator
Architecture GPT-2
# of Layers 1
# of Attention Heads 4
Hidden Dimension 768
Inner FFN Dimension 1536 (2 × 768)

Output Projection
Layer Type Linear (no bias)

D.2 HYPERPARAMETER SETUP

In Table 16, general hyperparameters utilized in running our experiments are outlined below. Table
17 details the margin values mi,o utilized in the TAP algorithm to determine whether replacement
will take place (Stage 1 of Fig. 2). Unless stated otherwise, the following are the settings across all
experiments.

Table 16: Hyperparameter settings to run numerical experiments.

Hyperparameters FLAVA (Singh et al., 2022) ViLT (Kim et al., 2021)

Num. of Clients Aggregated each Round 2 2
Batch Size 128 128
LoRA Encoder Attention Rank 8 4
LoRA Backbone Attention Rank 16 8
LoRA Backbone Expert Rank 4 8
LoRA Dropout Rate 0.3 0.3
KD Temperature τ̃ 1 1
Disent. Loss Weight 0.5 0.5
Distillation Loss Weight βo, ∀o ∈ O 2e-3 2e-3
Initial Learning Rate η0 1e-4 1e-4
Post-warmup Learning Rate ηt 3e-4 4e-4
AdamW weight decay 0.01 0.01
Num. of Warmup Rounds 20 20
Num. Local Iterations 20 30
Num. Distillation Iterations P 50 50
Total Communication Rounds T 200 200

Table 17: Margin settings to run numerical experiments.

Task Type FLAVA (Singh et al., 2022) ViLT (Kim et al., 2021)

Image Classification Task(s) 0.01 —
Image Generation Task(s) 0.005 0.01
Text Classification Task(s) 0.005 0.01
Text Generation Task(s) 0.01 0.02

D.3 TEXT TEMPLATES

In Table 18, we specify the template format utilized for each text generation-based dataset (MMLU,
VQA, and CommonGen). Portions surrounded with {} brackets indicate where certain data fields
are to be inputted.
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Table 18: Templates utilized for the text generation task-based datasets. The inputs are highlighted
in blue, with the model’s expected response marked in red.

Dataset Template

MMLU

The following is a multiple-choice question about
{SUBJECT}.
Choose the correct answer from the options below.
Question: {QUESTION}
Options:
{CHOICES}

Correct answer on {SUBJECT}: {ANSWER}

VQA

Answer the question based on the image.
Question: {QUESTION}

Answer: {ANSWER}

CommonGen

Generate an appropriate description from the concepts
below.
Concepts: {CONCEPTS}

Description: {ANSWER}
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